PROGRESS IN GEOGRAPHY ›› 2018, Vol. 37 ›› Issue (2): 214-223.doi: 10.18306/dlkxjz.2018.02.004
• Special Column: Young Geographer Forum • Previous Articles Next Articles
Received:
2017-09-25
Revised:
2018-01-29
Online:
2018-02-28
Published:
2018-02-28
Supported by:
Guoqing ZHANG. Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations[J].PROGRESS IN GEOGRAPHY, 2018, 37(2): 214-223.
[1] |
骆剑承, 盛永伟, 沈占锋, 等. 2009. 分步迭代的多光谱遥感水体信息高精度自动提取[J]. 遥感学报, 13(4): 610-615.
doi: 10.11834/jrs.20090405 |
[Luo J C, Sheng Y W, Shen Z F, et al.2009. Automatic and high-precise extraction for water information from multispectral images with the step-by-step iterative transformation mechanism[J]. Journal of Remote Sensing, 13(4): 610-615.]
doi: 10.11834/jrs.20090405 |
|
[2] |
Asoka A, Gleeson T, Wada Y, et al.2017. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India[J]. Nature Geoscience, 10(2): 109-117.
doi: 10.1038/ngeo2869 |
[3] |
Barnett T P, Adam J C, Lettenmaier D P.2005. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 438: 303-309.
doi: 10.1038/nature04141 |
[4] |
Behrangi A, Gardner A S, Reager J T, et al.2017. Using GRACE to constrain precipitation amount over cold mountainous basins[J]. Geophysical Research Letters, 44(1): 219-227.
doi: 10.1002/2016GL071832 |
[5] |
Biskop S, Maussion F, Krause P, et al.2016. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau[J]. Hydrology and Earth System Sciences, 20(1): 209-225.
doi: 10.5194/hess-20-209-2016 |
[6] |
Bolch T, Yao T D, Kang S C, et al.2010. A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976-2009[J]. The Cryosphere, 4(3): 419-433.
doi: 10.5194/tc-4-419-2010 |
[7] |
Che T, Li X, Jin R, et al.2008. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 49: 145-154.
doi: 10.3189/172756408787814690 |
[8] |
Chen J L, Famigliett J S, Scanlon B R, et al.2016. Groundwater storage changes: Present status from GRACE observations[J]. Surveys in Geophysics, 37(2): 397-417.
doi: 10.1007/s10712-015-9332-4 |
[9] |
Coll C, Caselles V, Galve J, et al.2005. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data[J]. Remote Sensing of Environment, 97(3): 288-300.
doi: 10.1016/j.rse.2005.05.007 |
[10] |
Crétaux J-F, Jelinski W, Calmant S, et al.2011. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data[J]. Advances in Space Research, 47(9): 1497-1507.
doi: 10.1016/j.asr.2011.01.004 |
[11] |
Crosman E T, Horel J D.2009. MODIS-derived surface temperature of the Great Salt Lake[J]. Remote Sensing of Environment, 113(1): 73-81.
doi: 10.1016/j.rse.2008.08.013 |
[12] |
Dai L Y, Che T, Ding Y J.2015. Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China[J]. Remote Sensing, 7(6): 7212-7230.
doi: 10.3390/rs70607212 |
[13] |
Feyisa G L, Meilby H, Fensholt R, et al.2014. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 140: 23-35.
doi: 10.1016/j.rse.2013.08.029 |
[14] |
Gardner A S, Moholdt G, Cogley J G, et al.2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 340: 852-857.
doi: 10.1126/science.1234532 pmid: 23687045 |
[15] |
Immerzeel W W, Van Beek L P H, Bierkens M F P.2010. Climate change will affect the Asian water towers[J]. Science, 328: 1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
[16] | IPCC. 2014. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge, UK: Cambridge University Press, 1132. |
[17] |
Jacob T, Wahr J, Pfeffer W T, et al.2012. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 482: 514-518.
doi: 10.1038/nature10847 |
[18] |
Ji L, Zhang L, Wylie B.2009. Analysis of dynamic thresholds for the normalized difference water index[J]. Photogrammetric Engineering & Remote Sensing, 75(11): 1307-1317.
doi: 10.14358/PERS.75.11.1307 |
[19] |
Jiang L G, Nielsen K, Andersen O B, et al.2017. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data[J]. Journal of Hydrology, 544: 109-124.
doi: 10.1016/j.jhydrol.2016.11.024 |
[20] |
Kääb A, Berthier E, Nuth C, et al.2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas[J]. Nature, 488: 495-498.
doi: 10.1038/nature11324 pmid: 200101 |
[21] |
Kleinherenbrink M, Lindenbergh R C, Ditmar P G.2015. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms[J]. Journal of Hydrology, 521: 119-131.
doi: 10.1016/j.jhydrol.2014.11.063 |
[22] |
Kropáček J, Maussion F, Chen F, et al.2013. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data[J]. The Cryosphere, 7(1): 287-301.
doi: 10.5194/tc-7-287-2013 |
[23] |
Lei Y B, Yang K, Wang B, et al.2014. Response of inland lake dynamics over the Tibetan Plateau to climate change[J]. Climatic Change, 125(2): 281-290.
doi: 10.1007/s10584-014-1175-3 |
[24] |
Lei Y B, Yao T D, Yi C L, et al.2012. Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau[J]. Journal of Glaciology, 58(207): 177-184.
doi: 10.3189/2012JoG11J025 |
[25] |
Li B Q, Zhang J Y, Yu Z B, et al.2017. Climate change driven water budget dynamics of a Tibetan inland lake[J]. Global and Planetary Change, 150: 70-80.
doi: 10.1016/j.gloplacha.2017.02.003 |
[26] |
Li G, Lin H.2017. Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential Bistatic SAR interferometry[J]. Global and Planetary Change, 149: 177-190.
doi: 10.1016/j.gloplacha.2016.12.018 |
[27] |
Li J L, Sheng Y W.2012. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: A case study in the Himalayas[J]. International Journal of Remote Sensing, 33(16): 5194-5213.
doi: 10.1080/01431161.2012.657370 |
[28] |
Li Y K, Liao J J, Guo H D, et al.2014. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010[J]. PLoS One, 9(11): e111890.
doi: 10.1371/journal.pone.0111890 pmid: 25372787 |
[29] |
Li Z W, Shen H F, Li H F, et al.2017. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery[J]. Remote Sensing of Environment, 191: 342-358.
doi: 10.1016/j.rse.2017.01.026 |
[30] |
Luo D L, Wu Q B, Jin H J, et al.2016. Recent changes in the active layer thickness across the northern hemisphere[J]. Environmental Earth Sciences, 75: 555.
doi: 10.1007/s12665-015-5229-2 |
[31] |
Ma R H, Duan H T, Hu C M, et al.2010. A half-century of changes in China's lakes: Global warming or human influence[J]. Geophysical Research Letters, 37(24): L24106.
doi: 10.1029/2010GL045514 |
[32] |
Ma R H, Yang G S, Duan H T, et al.2011. China's lakes at present: Number, area and spatial distribution[J]. Science China Earth Sciences, 54(2): 283-289.
doi: 10.1007/s11430-010-4052-6 |
[33] |
McFeeters S K.1996. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 17(7): 1425-1432.
doi: 10.1080/01431169608948714 |
[34] |
Neckel N, Kropáček J, Bolch T, et al.2014. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements[J]. Environmental Research Letters, 9(1): 014009.
doi: 10.1088/1748-9326/9/1/014009 |
[35] |
Nelson F E, Shiklomanov N I, Christiansen H H, et al.2004. The Circumpolar-Active-Layer-Monitoring (CALM) workshop: Introduction[J]. Permafrost and Periglacial Processes, 15(2): 99-101.
doi: 10.1002/(ISSN)1099-1530 |
[36] |
Oelke C, Zhang T J.2007. Modeling the active-layer depth over the Tibetan Plateau[J]. Arctic, Antarctic, and Alpine Research, 39(4): 714-722.
doi: 10.1657/1523-0430(06-200)[OELKE]2.0.CO;2 |
[37] |
O'Reilly C M, Sharma S, Gray D K, et al.2015. Rapid and highly variable warming of lake surface waters around the globe[J]. Geophysical Research Letters, 42(24): 10773-10781.
doi: 10.1002/2015GL066235 |
[38] |
Otsu N.1979. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66.
doi: 10.1109/TSMC.1979.4310076 |
[39] |
Pang Q Q, Cheng G D, Li S X, et al.2009. Active layer thickness calculation over the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 57(1): 23-28.
doi: 10.1016/j.coldregions.2009.01.005 |
[40] |
Pekel J-F, Cottam A, Gorelick N, et al.2016. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 540: 418-422.
doi: 10.1038/nature20584 pmid: 27926733 |
[41] |
Pritchard H D.2017. Asia’s glaciers are a regionally important buffer against drought[J]. Nature, 545: 169-174.
doi: 10.1038/nature22062 pmid: 28492255 |
[42] |
Qiu J.2008. China: The third pole[J]. Nature, 454: 393-396.
doi: 10.1038/454393a |
[43] |
Reinart A, Reinhold M.2008. Mapping surface temperature in large lakes with MODIS data[J]. Remote Sensing of Environment, 112(2): 603-611.
doi: 10.1016/j.rse.2007.05.015 |
[44] |
Savtchenko A, Ouzounov D, Ahmad S, et al.2004. Terra and aqua MODIS products available from NASA GES DAAC[J]. Advances in Space Research, 34(4): 710-714.
doi: 10.1016/j.asr.2004.03.012 |
[45] |
Schneider P, Hook S J, Radocinski R G, et al.2009. Satellite observations indicate rapid warming trend for lakes in California and Nevada[J]. Geophysical Research Letters, 36(22): L22402.
doi: 10.1029/2009GL040846 |
[46] |
Song C Q, Huang B, Ke L H.2013. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J]. Remote Sensing of Environment, 135: 25-35.
doi: 10.1016/j.rse.2013.03.013 |
[47] |
Song C Q, Huang B, Richards K, et al.2014. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes[J]. Water Resources Research, 50(4): 3170-3186.
doi: 10.1002/2013WR014724 |
[48] |
Stendel M, Christensen J H.2002. Impact of global warming on permafrost conditions in a coupled GCM[J]. Geophysical Research Letters, 29(13): 1632.
doi: 10.1029/2001GL014345 |
[49] |
Tao S L, Fang J Y, Zhao X, et al.2015. Rapid loss of lakes on the Mongolian Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(7): 2281-2286.
doi: 10.1073/pnas.1411748112 pmid: 25646423 |
[50] |
Tong K, Su F G, Xu B Q.2016. Quantifying the contribution of glacier meltwater in the expansion of the largest lake in Tibet[J]. Journal of Geophysical Research: Atmospheres, 121(19): 11158-11173.
doi: 10.1002/2016JD025424 |
[51] |
Urban T J, Schutz B E, Neuenschwander A L.2008. A survey of ICESat coastal altimetry applications: Continental coast, open ocean island, and inland river[J]. Terrestrial, Atmospheric and Oceanic Sciences, 19(1-2): 1-19.
doi: 10.3319/TAO.2008.19.1-2.1(SA) |
[52] |
Wan Z M, Dozier J.1996. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892-905.
doi: 10.1109/36.508406 |
[53] |
Wan Z M, Zhang Y L, Li Z-L, et al.2002. Preliminary estimate of calibration of the moderate resolution imaging spectroradiometer thermal infrared data using Lake Titicaca[J]. Remote Sensing of Environment, 80(3): 497-515.
doi: 10.1016/S0034-4257(01)00327-3 |
[54] |
Wan Z M, Zhang Y L, Zhang Q C, et al.2002. Validation of the land-surface temperature products retrieved from Terra moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 83(1-2): 163-180.
doi: 10.1016/S0034-4257(02)00093-7 |
[55] |
Wu Q B, Hou Y D, Yun H B, et al.2014. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China[J]. Global and Planetary Change, 124: 149-155.
doi: 10.1016/j.gloplacha.2014.09.002 |
[56] |
Wu Y H, Zheng H X, Zhang B, et al.2014. Long-term changes of lake level and water budget in the Nam Co Lake Basin, Central Tibetan Plateau[J]. Journal of Hydrometeorology, 15(3): 1312-1322.
doi: 10.1175/JHM-D-13-093.1 |
[57] |
Xu H Q.2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 27(14): 3025-3033.
doi: 10.1080/01431160600589179 |
[58] |
Yao T D, Pu J C, Lu A X, et al.2007. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions[J]. Arctic, Antarctic, and Alpine Research, 39(4): 642-650.
doi: 10.1657/1523-0430(07-510)[YAO]2.0.CO;2 |
[59] |
Yao T D, Thompson L, Yang W, et al.2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2(9): 663-667.
doi: 10.1038/nclimate1580 |
[60] |
Yi S, Wang Q Y, Sun W K.2016. Basin mass dynamic changes in China from GRACE based on a multibasin inversion method[J]. Journal of Geophysical Research: Solid Earth, 121(5): 3782-3803.
doi: 10.1002/2015JB012608 |
[61] |
Yu J Y, Zhang G Q, Yao T D, et al.2016. Developing daily cloud-free snow composite products from MODIS Terra-Aqua and IMS for the Tibetan Plateau[J]. IEEE Transactions on Geoscience and Remote Sensing, 54(4): 2171-2180.
doi: 10.1109/TGRS.2015.2496950 |
[62] |
Zhang G Q, Li J L, Zheng G X.2017. Lake-area mapping in the Tibetan Plateau: an evaluation of data and methods[J]. International Journal of Remote Sensing, 38(3): 742-772.
doi: 10.1080/01431161.2016.1271478 |
[63] |
Zhang G Q, Xie H J, Duan S Q, et al.2011. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change[J]. Journal of Applied Remote Sensing, 5(1): 053532.
doi: 10.1117/1.3601363 |
[64] |
Zhang G Q, Xie H J, Kang S C, et al.2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009)[J]. Remote Sensing of Environment, 115(7): 1733-1742.
doi: 10.1016/j.rse.2011.03.005 |
[65] |
Zhang G Q, Xie H J, Yao T D, et al.2012. Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010)[J]. Water Resources Research, 48(10): W10529.
doi: 10.1029/2012WR011971 |
[66] |
Zhang G Q, Xie H J, Yao T D, et al.2013. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data[J]. Chinese Science Bulletin, 58(31): 3815-3829.
doi: 10.1007/s11434-013-5818-y |
[67] |
Zhang G Q, Xie H J, Yao T D, et al.2014. Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM)[J]. Journal of Hydrology, 519: 976-987.
doi: 10.1016/j.jhydrol.2014.08.022 |
[68] |
Zhang G Q, Yao T D, Piao S L, et al.2017. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades[J]. Geophysical Research Letters, 44(1): 252-260.
doi: 10.1002/2016GL072033 |
[69] |
Zhang G Q, Yao T D, Shum C K, et al.2017. Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin[J]. Geophysical Research Letters, 44(11): 5550-5560.
doi: 10.1002/2017GL073773 |
[70] |
Zhang G Q, Yao T D, Xie H J, et al.2013. Increased mass over the Tibetan Plateau: From lakes or glaciers[J]. Geophysical Research Letters, 40(10): 2125-2130.
doi: 10.1002/grl.50462 |
[71] |
Zhang G Q, Yao T D, Xie H J, et al.2014a. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J]. Journal of Geophysical Research: Atmospheres, 119(14): 8552-8567.
doi: 10.1002/2014JD021615 |
[72] |
Zhang G Q, Yao T D, Xie H J, et al.2014b. Lakes' state and abundance across the Tibetan Plateau[J]. Chinese Science Bulletin, 59(24): 3010-3021.
doi: 10.1007/s11434-014-0258-x |
[73] |
Zhang G Q, Zheng G X, Gao Y, et al.2017. Automated water classification in the Tibetan Plateau using Chinese GF-1 WFV data[J]. Photogrammetric Engineering & Remote Sensing, 83(7): 509-519.
doi: 10.14358/PERS.83.7.509 |
[74] |
Zhou J, Wang L, Zhang Y S, et al.2015. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003-2012 from a basin-wide hydrological modeling[J]. Water Resources Research, 51(10): 8060-8086.
doi: 10.1002/2014WR015846 |
[75] |
Zhu L P, Xie M P, Wu Y H.2010. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau[J]. Chinese Science Bulletin, 55(13): 1294-1303.
doi: 10.1007/s11434-010-0015-8 |
[76] |
Zhu W B, Lű A F, Jia S F.2013. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products[J]. Remote Sensing of Environment, 130: 62-73.
doi: 10.1016/j.rse.2012.10.034 |
[77] |
Zhu Z, Wang S X, Woodcock C E.2015. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-74-7, 8, and Sentinel 2 images[J]. Remote Sensing of Environment, 159: 269-277.
doi: 10.1016/j.rse.2014.12.014 |
[78] |
Zwally H J, Schutz B, Abdalati W, et al.2002. ICESat's laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 34(3-4): 405-445.
doi: 10.1016/S0264-3707(02)00042-X |
[1] | SHI Xiao, WANG Guojie, SUN Ming, LI Yvtao, WANG Boni, SHEN Jie. Evaluation of the long-term high-resolution infrared radiation sounder land surface temperature during 1980-2009 in Jiangsu Province, China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1283-1295. |
[2] | SUN He, SU Fengge. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin [J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1126-1139. |
[3] | LIAO Xiaohan. Advance of geographic sciences and new technology applications [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 709-715. |
[4] | HU Xu, NIE Yong, XU Xia, JIANG Sheng, ZHANG Yili. Monitoring land-use change in Hetian Tarim Basin, China using satellite remote sensing observation between 1990 and 2016 [J]. PROGRESS IN GEOGRAPHY, 2020, 39(4): 577-590. |
[5] | TANG Yin, WANG Zhonggen, WANG Wanqing, HUANG Huojian, YUAN Yong. Multifunctional classification of aquatic habitats for remote sensing data [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 454-460. |
[6] | CHEN Rui, YANG Meixue, WAN Guoning, WANG Xuejia. Soil freezing-thawing processes on the Tibetan Plateau: A review based on hydrothermal dynamics [J]. PROGRESS IN GEOGRAPHY, 2020, 39(11): 1944-1958. |
[7] | JIANG Kaisi,LIU Zhengjia,LI Yurui,WANG Yongsheng,WANG Yu. Land use change of typical villages in the loess hilly and gully region and implications for regional rural transformation and development [J]. PROGRESS IN GEOGRAPHY, 2019, 38(9): 1305-1315. |
[8] | DUAN Hongtao,LUO Juhua,CAO Zhigang,XUE Kun,XIAO Qitao,LIU Dong. Progress in remote sensing of aquatic environments at the watershed scale [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1182-1195. |
[9] | MA Mingguo,TANG Xuguang,HAN Xujun,SHI Weiyu,SONG Lisheng,HUANG Jing. Research progress and prospect of observation and simulation of carbon cycle in the karst areas of Southwest China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1196-1205. |
[10] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[11] | Yingbiao CHEN, Zihao ZHENG, Zhifeng WU, Qinglan QIAN. Review and prospect of application of nighttime light remote sensing data [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 205-223. |
[12] | WU Qihui, LI Changyou, SUN Biao, SHI Xiaohong, ZHAO Shengnan, HAN Zhiming. Change of ice phenology in the Hulun Lake from 1986 to 2017 [J]. PROGRESS IN GEOGRAPHY, 2019, 38(12): 1933-1943. |
[13] | Ming XU, Yuli SHI, Bin WANG. Reconstruction of high resolution monthly precipitation data of the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2018, 37(7): 923-932. |
[14] | Hongyuan ZHANG, Yanhong WU, Yanjun LIU, Linan GUO. Water storage variation of the Qinghai Lake in recent decades based on satellite observation [J]. PROGRESS IN GEOGRAPHY, 2018, 37(6): 823-832. |
[15] | Zhenming JI. Advances and prospects of research on simulating transboundary black carbon and their climatic effects over the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 465-475. |
|