PROGRESS IN GEOGRAPHY ›› 2018, Vol. 37 ›› Issue (2): 183-197.doi: 10.18306/dlkxjz.2018.02.002
• Special Column: Young Geographer Forum • Previous Articles Next Articles
Received:
2017-09-29
Revised:
2017-01-24
Online:
2018-02-28
Published:
2018-02-28
Supported by:
Ping WANG. Progress and prospect of research on water exchange between intermittent rivers and aquifers in arid regions of northwestern China[J].PROGRESS IN GEOGRAPHY, 2018, 37(2): 183-197.
[39] |
Cheng G D.1983. The mechanism of repeated-segregation for the formation of thick layered ground ice[J]. Cold Regions Science and Technology, 8(1): 57-66.
doi: 10.1016/0165-232X(83)90017-4 |
[40] |
Cheng G D, Jin H J.2013. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 21(1): 5-23.
doi: 10.1007/s10040-012-0927-2 |
[41] |
Clapp R B, Hornberger G M.1978. Empirical equations for some soil hydraulic properties[J]. Water Resources Research, 14(4): 601-604.
doi: 10.1029/WR014i004p00601 |
[42] |
Constantz J.2008. Heat as a tracer to determine streambed water exchanges[J]. Water Resources Research, 44(4): W00D10.
doi: 10.1029/2008WR006996 |
[43] |
Constantz J.2016. Streambeds merit recognition as a scientific discipline[J]. Wiley Interdisciplinary Reviews: Water, 3(1): 13-18.
doi: 10.1002/wat2.1119 |
[44] |
Constantz J, Cox M H, Su G W.2003. Comparison of heat and bromide as ground water tracers near streams[J]. Ground Water, 41(5): 647-656.
doi: 10.1111/j.1745-6584.2003.tb02403.x pmid: 13678119 |
[45] |
Constantz J, Thomas C L, Zellweger G.1994. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge[J]. Water Resources Research, 30(12): 3253-3264.
doi: 10.1029/94WR01968 |
[46] |
Cook P G.2015. Quantifying river gain and loss at regional scales[J]. Journal of Hydrology, 531: 749-758.
doi: 10.1016/j.jhydrol.2015.10.052 |
[47] |
Cuthbert M O, Mackay R, Durand V, et al.2010. Impacts of river bed gas on the hydraulic and thermal dynamics of the hyporheic zone[J]. Advances in Water Resources, 33(11): 1347-1358.
doi: 10.1016/j.advwatres.2010.09.014 |
[48] |
Dahan O, Tatarsky B, Enzel Y, et al.2008. Dynamics of flood water infiltration and ground water recharge in hyperarid desert[J]. Ground Water, 46(3): 450-461.
doi: 10.1111/j.1745-6584.2007.00414.x pmid: 18194313 |
[49] |
Datry T, Larned S T, Tockner K.2014. Intermittent rivers: A challenge for freshwater ecology[J]. BioScience, 64(3): 229-235.
doi: 10.1093/biosci/bit027 |
[50] |
de Vries J, Simmers I.2002. Groundwater recharge: An overview of processes and challenges[J]. Hydrogeology Journal, 10(1): 5-17.
doi: 10.1007/s10040-001-0171-7 |
[51] |
Doble R C, Crosbie R S, Smerdon B D, et al.2012. Groundwater recharge from overbank floods[J]. Water Resources Research, 48(9): W09522.
doi: 10.1029/2011WR011441 |
[52] |
Doppler T, Franssen H-J H, Kaiser H-P, et al.2007. Field evidence of a dynamic leakage coefficient for modelling river-aquifer interactions[J]. Journal of Hydrology, 347(1-2): 177-187.
doi: 10.1016/j.jhydrol.2007.09.017 |
[1] |
程国栋, 肖洪浪, 傅伯杰, 等. 2014. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 29(4): 431-437.
doi: 10.11867/j.issn.1001-8166.2014.04.0431 |
[Cheng G D, Xiao H L, Fu B J, et al.2014. Advances in synthetic research on the eco-hydrological process of the Heihe River Basin[J]. Advances in Earth Science, 29(4): 431-437.]
doi: 10.11867/j.issn.1001-8166.2014.04.0431 |
|
[53] |
Du C Y, Yu J J, Wang P, et al.2016. Reference evapotranspiration changes: Sensitivities to and contributions of meteorological factors in the Heihe River basin of northwestern China (1961-2014)[J]. Advances in Meteorology, 2016: 4143580.
doi: 10.1155/2016/4143580 |
[54] |
Duque C, Calvache M L, Engesgaard P.2010. Investigating river-aquifer relations using water temperature in an anthropized environment (Motril-Salobreña aquifer)[J]. Journal of Hydrology, 381(1-2): 121-133.
doi: 10.1016/j.jhydrol.2009.11.032 |
[2] |
杜尧, 马腾, 邓娅敏, 等. 2017. 潜流带水文—生物地球化学: 原理、方法及其生态意义[J]. 地球科学, 42(5): 661-673.
doi: 10.3799/dqkx.2017.054 |
[Du Y, Ma T, Deng Y M, et al.2017. Hydro-biogeochemistry of hyporheic zone: Principles, methods and ecological significance[J]. Earth Science, 42(5): 661-673.]
doi: 10.3799/dqkx.2017.054 |
|
[55] |
Essaid H I, Zamora C M, McCarthy K A, et al.2008. Using heat to characterize streambed water flux variability in four stream reaches[J]. Journal of Environmental Quality, 37(3): 1010-1023.
doi: 10.2134/jeq2006.0448 pmid: 18453424 |
[56] |
Fleckenstein J H, Krause S, Hannah D M, et al.2010. Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics[J]. Advances in Water Resources, 33(11): 1291-1295.
doi: 10.1016/j.advwatres.2010.09.011 |
[3] | 冯斯美, 宋进喜, 来文立, 等. 2013. 河流潜流带渗透系数变化研究进展[J]. 南水北调与水利科技, 11(3): 123-126. |
[Feng S M, Song J X, Lai W L, et al.2013. An overview of the effects of hyporheic processes on the streambed hydraulic conductivity in the hyporheic zone of a river[J]. South-to-North Water Transfers and Water Science & Technology, 11(3): 123-126.] | |
[57] |
Fox G A, Durnford D S.2003. Unsaturated hyporheic zone flow in stream/aquifer conjunctive systems[J]. Advances in Water Resources, 26(9): 989-1000.
doi: 10.1016/S0309-1708(03)00087-3 |
[58] |
Frey K E, McClelland J W.2009. Impacts of permafrost degradation on arctic river biogeochemistry[J]. Hydrological Processes, 23(1): 169-182.
doi: 10.1002/hyp.7196 |
[59] |
Gao T G, Zhang T J, Cao L, et al.2016. Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau[J]. Cold Regions Science and Technology, 126: 36-43.
doi: 10.1016/j.coldregions.2016.03.007 |
[60] |
Gerecht K E, Cardenas M B, Guswa A J, et al.2011. Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river[J]. Water Resources Research, 47(3): W03524.
doi: 10.1029/2010WR009794 |
[4] |
何志斌, 赵文智. 2007. 河床水力传导度及其各向异性的测定[J]. 水科学进展, 18(3): 351-355.
doi: 10.3321/j.issn:1001-6791.2007.03.007 |
[He Z B, Zhao W Z.2007. Measurement of streambed hydraulic conductivity and anisotropy analysis[J]. Advances in Water Science, 18(3): 351-355.]
doi: 10.3321/j.issn:1001-6791.2007.03.007 |
|
[61] |
Gibson S, Heath R, Abraham D, et al.2011. Visualization and analysis of temporal trends of sand infiltration into a gravel bed[J]. Water Resources Research, 47(12): W12601.
doi: 10.1029/2011WR010486 |
[62] |
Halloran L J S, Rau G C, Andersen M S.2016. Heat as a tracer to quantify processes and properties in the vadose zone: A review[J]. Earth-Science Reviews, 159: 358-373.
doi: 10.1016/j.earscirev.2016.06.009 |
[5] | 胡立堂, 王忠静, 赵建世, 等. 2007. 地表水和地下水相互作用及集成模型研究[J]. 水利学报, 38(1): 54-59. |
[Hu L T, Wang Z J, Zhao J S, et al.2007. Advances in the interactions and integrated model between surface water and groundwater[J]. Journal of Hydraulic Engineering, 38(1): 54-59.] | |
[63] |
Hantush M S.1965. Wells near streams with semipervious beds[J]. Journal of Geophysical Research, 70(12): 2829-2838.
doi: 10.1029/JZ070i012p02829 |
[64] |
Hatch C E, Fisher A T, Revenaugh J S, et al.2006. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development[J]. Water Resources Research, 42(10): W10410.
doi: 10.1029/2005WR004787 |
[6] | 黄丽, 郑春苗, 刘杰, 等. 2012. 分布式光纤测温技术在黑河中游地表水与地下水转换研究中的应用[J]. 水文地质工程地质, 39(2): 1-6. |
[Huang L, Zheng C M, Liu J, et al.2012. Application of distributed temperature sensing to study groundwater-surface water interactions in the Heihe River Basin[J]. Hydrogeology and Engineering Geology, 39(2): 1-6.] | |
[7] |
靳孟贵, 鲜阳, 刘延锋. 2017. 脱节型河流与地下水相互作用研究进展[J]. 水科学进展, 28(1): 149-160.
doi: 10.14042/j.cnki.32.1309.2017.01.017 |
[Jin M G, Xian Y, Liu Y F.2017. Disconnected stream and groundwater interaction: A review[J]. Advances in Water Science, 28(1): 149-160.]
doi: 10.14042/j.cnki.32.1309.2017.01.017 |
|
[65] |
Hatch C E, Fisher A T, Ruehl C R, et al.2010. Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods[J]. Journal of Hydrology, 389(3-4): 276-288.
doi: 10.1016/j.jhydrol.2010.05.046 pmid: 15373905 |
[66] |
Healy R W, Essaid H I.2012. VS2DI: Model use, calibration, and validation[J]. Transactions of the ASABE, 55(4): 1249-1260.
doi: 10.13031/2013.42238 |
[8] | 刘传琨, 胡玥, 刘杰, 等. 2014. 基于温度信息的地表—地下水交互机制研究进展[J]. 水文地质工程地质, 41(5): 5-10, 18. |
[Liu C K, Hu Y, Liu J, et al.2014. Advances in using temperature to study surface water-groundwater interactions[J]. Hydrogeology and Engineering Geology, 41(5): 5-10, 18.] | |
[67] | Healy R W, Ronan A D.1996. Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media—Modification of the U.S. Geological Survey's computer program VS2DT[R]. Water resources investigation report 96-4230. Denver, Colorado: U.S. Geological Survey. |
[68] |
Hinkel K M, Arp C D, Townsend-Small A, et al.2017. Can deep groundwater influx be detected from the geochemistry of thermokarst lakes in arctic Alaska[J]. Permafrost and Periglacial Processes, 28(3): 552-557.
doi: 10.1002/ppp.1895 |
[9] | 刘登峰, 田富强, 林木, 等. 2014. 基于生态水文耦合模型的塔里木河下游人工输水优化方案研究[J]. 水力发电学报, 33(4): 51-59. |
[Liu D F, Tian F Q, Lin M, et al.2014. Study on optimal scheme of water transfer in the lower Tarim river based on ecohydrological evolution model[J]. Journal of Hydroelectric Engineering, 33(4): 51-59.] | |
[69] | Hoffmann J P, Ripich M A, Ellett K M.2002. Characteristics of shallow deposits beneath Rillito Creek, Pima County, Arizona[R]. Water-resources investigations report 01-4257. Tucson, AZ: US Geological Survey: 42. |
[70] |
Huang X, Andrews C B, Liu J, et al.2016. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics[J]. Water Resources Research, 52(8): 6419-6439.
doi: 10.1002/2015WR018408 |
[10] | 马瑞, 董启明, 孙自永, 等. 2013. 地表水与地下水相互作用的温度示踪与模拟研究进展[J]. 地质科技情报, 32(2): 131-137. |
[Ma R, Dong Q M, Sun Z Y, et al.2013. Using heat to trace and model the surface water-groundwater interactions: A review[J]. Geological Science and Technology Information, 32(2): 131-137.] | |
[71] |
Hunt B.1999. Unsteady stream depletion from ground water pumping[J]. Ground Water, 37(1): 98-102.
doi: 10.1111/j.1745-6584.1999.tb00962.x |
[72] | Hvorslev M J.1951. Time lag and soil permeability in groundwater observations[R]. Waterways experiment station bulletin 36. Vicksburg, MS: US Army Corps of Engineers. |
[73] |
Hyun Y, Kim H, Lee S-S, et al.2011. Characterizing streambed water fluxes using temperature and head data on multiple spatial scales in Munsan stream, South Korea[J]. Journal of Hydrology, 402(3-4): 377-387.
doi: 10.1016/j.jhydrol.2011.03.032 |
[74] |
Jolly I D, McEwan K L, Holland K L.2008. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology[J]. Ecohydrology, 1(1): 43-58.
doi: 10.1002/eco.6 |
[11] |
庞忠和. 2014. 新疆水循环变化机理与水资源调蓄[J]. 第四纪研究, 34(5): 907-917.
doi: 10.3969/j.issn.1001-7410.2014.05.01 |
[Pang Z H.2014. Mechanism of water cycle changes and implications on water resources regulation in Xinjiang Uygur autonomous region[J]. Quaternary Sciences, 34(5): 907-917.]
doi: 10.3969/j.issn.1001-7410.2014.05.01 |
|
[75] |
Kalbus E, Reinstorf F, Schirmer M.2006. Measuring methods for groundwater-surface water interactions: A review[J]. Hydrology and Earth System Sciences, 10(6): 873-887.
doi: 10.5194/hess-10-873-2006 |
[76] |
Landon M K, Rus D L, Harvey F E.2001. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds[J]. Ground Water, 39(6): 870-885.
doi: 10.1111/j.1745-6584.2001.tb02475.x pmid: 11708453 |
[12] |
束龙仓, Chen X H.2002. 美国内布拉斯加州普拉特河河床沉积物渗透系数的现场测定[J]. 水科学进展, 13(5): 629-633.
doi: 10.3321/j.issn:1001-6791.2002.05.017 |
[Shu L C, Chen X H.2002. Measurement in situ of streambed hydraulic conductivities in the Platte River, Nebraska[J]. Advances in Water Science, 13(5): 629-633.]
doi: 10.3321/j.issn:1001-6791.2002.05.017 |
|
[77] | Lapham W W.1989. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity[R]. US Geological Survey water-supply paper 2337. Denver, Colorado: USGS Numbered Series: 35. |
[78] |
Liao C, Zhuang Q H.2017. Quantifying the role of permafrost distribution in groundwater and surface water interactions using a three-dimensional hydrological model[J]. Arctic, Antarctic, and Alpine Research, 49(1): 81-100.
doi: 10.1657/AAAR0016-022 |
[13] | 束龙仓, Chen X H.2003. 河流—含水层系统中水文要素的变化过程分析[J]. 河海大学学报: 自然科学版, 31(3): 251-254. |
[Shu L C, Chen X H.2003. Variation process of hydrologic elements of river-aquifer system[J]. Journal of Hohai University: Natural Sciences, 31(3): 251-254.] | |
[79] |
Liu X, Yu J J, Wang P, et al.2016. Lake evaporation in a hyper-arid environment, northwest of China—measurement and estimation[J]. Water, 8(11): 527.
doi: 10.3390/w8110527 |
[80] |
Lundquist J D, Lott F.2008. Using inexpensive temperature sensors to monitor the duration and heterogeneity of snow-covered areas[J]. Water Resources Research, 44(4): W00D16.
doi: 10.1029/2008wr007035 |
[14] |
束龙仓, 鲁程鹏, 李伟. 2008. 考虑参数不确定性的地表水与地下水交换量的计算方法[J]. 水文地质工程地质, 35(5): 68-71.
doi: 10.3969/j.issn.1000-3665.2008.05.016 |
[Shu L C, Lu C P, Li W.2008. Calculation method of the exchange volume between surface water and groundwater based on uncertainty of parameters[J]. Hydrogeology and Engineering Geology, 35(5): 68-71.]
doi: 10.3969/j.issn.1000-3665.2008.05.016 |
|
[15] | 宋进喜, Chen X H, Cheng C, 等. 2009. 美国内布拉斯加州埃尔克霍恩河河床沉积物渗透系数深度变化特征[J]. 科学通报, 54(24): 3892-3899. |
[Song J X, Chen X H, Cheng C, et al.2009. Variability of streambed vertical hydraulic conductivity with depth along the Elkhorn River, Nebraska, USA[J]. Chinese Science Bulletin, 54(24): 3892-3899.] | |
[81] |
McCallum A M, Andersen M S, Rau G C, et al.2014. River-aquifer interactions in a semiarid environment investigated using point and reach measurements[J]. Water Resources Research, 50(4): 2815-2829.
doi: 10.1002/2012WR012922 |
[82] |
Min L L, Yu J J, Liu C M, et al.2013. The spatial variability of streambed vertical hydraulic conductivity in an intermittent river, northwestern China[J]. Environmental Earth Sciences, 69(3): 873-883.
doi: 10.1007/s12665-012-1973-8 |
[16] |
宋进喜, 任朝亮, 李梦洁, 等. 2014. 河流潜流带颤蚓生物扰动对沉积物渗透性的影响研究[J]. 环境科学学报, 34(8): 2062-2069.
doi: 10.13671/j.hjkxxb.2014.0586 |
[Song J X, Ren C L, Li M J, et al.2014. Effects of Tubificid bioturbations on vertical hydraulic conductivity of the hyporheic streambed sediments[J]. Acta Scientiae Circumstantiae, 34(8): 2062-2069.]
doi: 10.13671/j.hjkxxb.2014.0586 |
|
[83] |
Morin E, Grodek T, Dahan O, et al.2009. Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb River, Namibia[J]. Journal of Hydrology, 368(1-4): 262-275.
doi: 10.1016/j.jhydrol.2009.02.015 |
[84] |
Mutiti S, Levy J.2010. Using temperature modeling to investigate the temporal variability of riverbed hydraulic conductivity during storm events[J]. Journal of Hydrology, 388(3-4): 321-334.
doi: 10.1016/j.jhydrol.2010.05.011 |
[85] | Niswonger R G, Prudic D E.2005. Documentation of the Streamflow-Routing (SFR2) Package to include unsaturated flow beneath streams—A modification to SFR1[R]. U.S. Geological Survey techniques and methods 6-A13. Denver, Colorado: U.S. Geological Survey. |
[86] |
Noorduijn S L, Shanafield M, Trigg M A, et al.2014. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data[J]. Water Resources Research, 50(2): 1474-1489.
doi: 10.1002/2012WR013424 |
[17] |
王根绪, 李元寿, 王一博, 等. 2007. 长江源区高寒生态与气候变化对河流径流过程的影响分析[J]. 冰川冻土, 29(2): 159-168.
doi: 10.3969/j.issn.1000-0240.2007.02.001 |
[Wang G X, Li Y S, Wang Y B, et al.2007. Impacts of alpine ecosystem and climate changes on surface runoff in the headwaters of the Yangtze River[J]. Journal of Glaciology and Geocryology, 29(2): 159-168.]
doi: 10.3969/j.issn.1000-0240.2007.02.001 |
|
[87] |
Partington D, Therrien R, Simmons C T, et al.2017. Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds[J]. Reviews of Geophysics, 55(2): 287-309.
doi: 10.1002/2016RG000530 |
[88] |
Pekel J-F, Cottam A, Gorelick N, et al.2016. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 540: 418-422.
doi: 10.1038/nature20584 pmid: 27926733 |
[18] |
王平, 于静洁, 闵雷雷, 等. 2014. 额济纳绿洲浅层地下水动态监测研究及其进展[J]. 第四纪研究, 34(5): 982-993.
doi: 10.3969/j.issn.1001-7410.2014.05.08 |
[Wang P, Yu J J, Min L L, et al.2014. Shallow groundwater regime and its driving forces in the Ejina Oasis[J]. Quaternary Sciences, 34(5): 982-993.]
doi: 10.3969/j.issn.1001-7410.2014.05.08 |
|
[89] |
Pozdniakov S P, Wang P, Lekhov M V.2016. A semi-analytical generalized Hvorslev formula for estimating riverbed hydraulic conductivity with an open-ended standpipe permeameter[J]. Journal of Hydrology, 540: 736-743.
doi: 10.1016/j.jhydrol.2016.06.061 |
[90] | Prudic D E, Konikow L F, Banta E R.2004. A new streamflow-routing (SFR1) package to simulate stream-aquifer interaction with MODFLOW-2000[R]. U.S. Geological Survey, open-file report 2004-1042. Carson, Nevada: U.S. Department of the Interior, U.S. Geological Survey. |
[19] | 吴志伟, 宋汉周. 2011. 地下水温度示踪理论与方法研究进展[J]. 水科学进展, 22(5): 733-740. |
[Wu Z W, Song H Z.2011. Temperature as a groundwater tracer: Advances in theory and methodology[J]. Advances in Water Science, 22(5): 733-740.] | |
[20] | 徐斅祖, 王家澄, 张立新. 2001. 冻土物理学[M]. 北京: 科学出版社. |
[Xu X Z, Wang J C, Zhang L X.2001. Physics of frozen soil[M]. Beijing, China: Science Press.] | |
[21] | 薛禹群. 1997. 地下水动力学[M]. 北京: 地质出版社. |
[Xue Y Q.1997. Dixia shuidonglixue[M]. Beijing, China: Geological Publishing House.] | |
[91] |
Rau G C, Halloran L J S, Cuthbert M O, et al.2017. Characterising the dynamics of surface water-groundwater interactions in intermittent and ephemeral streams using streambed thermal signatures[J]. Advances in Water Resources, 107: 354-369.
doi: 10.1016/j.advwatres.2017.07.005 |
[92] |
Reid M E, Dreiss S J.1990. Modeling the effects of unsaturated, stratified sediments on groundwater recharge from intermittent streams[J]. Journal of Hydrology, 114(1-2): 149-174.
doi: 10.1016/0022-1694(90)90079-D |
[93] |
Rimon Y, Nativ R, Dahan O.2011. Vadose zone water pressure variation during infiltration events[J]. Vadose Zone Journal, 10(3): 1105-1112.
doi: 10.2136/vzj2010.0061 |
[94] |
Rivière A, Gonçalvès J, Jost A, et al.2014. Experimental and numerical assessment of transient stream-aquifer exchange during disconnection[J]. Journal of Hydrology, 517: 574-583.
doi: 10.1016/j.jhydrol.2014.05.040 |
[22] | 中国科学院地学部. 1996. 西北干旱区水资源考察报告: 关于黑河、石羊河流域合理用水和拯救生态问题的建议[J]. 地球科学进展, 11(1): 1-4. |
[Earth Science Division of Chinese Academy of Sciences.1996. Xibei ganhanqu shuiziyuan kaocha baogao: Guanyu HeiHe, ShiYangHe liuyu heli yongshui he zhengjiu shengtai wenti de jianyi[J]. Advances in Earth Sciences, 11(1): 1-4.] | |
[95] |
Ronan A D, Prudic D E, Thodal C E, et al.1998. Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream[J]. Water Resources Research, 34(9): 2137-2153.
doi: 10.1029/98WR01572 |
[96] |
Rosenberry D O.2008. A seepage meter designed for use in flowing water[J]. Journal of Hydrology, 359(1-2): 118-130.
doi: 10.1016/j.jhydrol.2008.06.029 |
[23] | 周幼吾, 郭东信, 程国栋, 等. 2000. 中国冻土[M]. 北京: 科学出版社. |
[Zhou Y W, Guo D X, Cheng G D, et al.2000. Geocryology in China[M]. Beijing, China: Science Press.] | |
[97] | Rosenberry D O, LaBaugh J W.2008. Field techniques for estimating water fluxes between surface water and ground water[R]. Techniques and methods chapter 4-D2. Reston, VA: U.S. Department of the Interior, U.S. Geological Survey. |
[98] |
Rosenberry D O, Pitlick J.2009. Local-scale variability of seepage and hydraulic conductivity in a shallow gravel-bed river[J]. Hydrological Processes, 23(23): 3306-3318.
doi: 10.1002/hyp.7433 |
[24] | 朱金峰, 刘悦忆, 章树安, 等. 2017. 地表水与地下水相互作用研究进展[J]. 中国环境科学, 37(8): 3002-3010. |
[Zhu J J, Liu Y Y, Zhang S A, et al.2017. Review on the research of surface water and groundwater interactions[J]. China Environmental Science, 37(8): 3002-3010.] | |
[99] |
Roshan H, Rau G C, Andersen M S, et al.2012. Use of heat as tracer to quantify vertical streambed flow in a two-dimensional flow field[J]. Water Resources Research, 48(10): W10508.
doi: 10.1029/2012WR011918 |
[100] |
Scanlon B R, Healy R W, Cook P G.2002. Choosing appropriate techniques for quantifying groundwater recharge[J]. Hydrogeology Journal, 10(1): 18-39.
doi: 10.1007/s10040-001-0176-2 |
[25] |
Alyamani M S, Şen Z.1993. Determination of hydraulic conductivity from complete grain-size distribution curves[J]. Ground Water, 31(4): 551-555.
doi: 10.1111/j.1745-6584.1993.tb00587.x |
[26] |
Anderson M P.2005. Heat as a ground water tracer[J]. Ground Water, 43(6): 951-968.
doi: 10.1111/j.1745-6584.2005.00052.x pmid: 16324018 |
[101] |
Schmidt C, Conant Jr B, Bayer-Raich M, et al.2007. Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures[J]. Journal of Hydrology, 347(3-4): 292-307.
doi: 10.1016/j.jhydrol.2007.08.022 |
[102] |
Selker J S, Thévenaz L, Huwald H, et al.2006. Distributed fiber-optic temperature sensing for hydrologic systems[J]. Water Resources Research, 42(12): W12202.
doi: 10.1029/2006WR005326 |
[27] |
Anibas C, Buis K, Verhoeven R, et al.2011. A simple thermal mapping method for seasonal spatial patterns of groundwater-surface water interaction[J]. Journal of Hydrology, 397(1-2): 93-104.
doi: 10.1016/j.jhydrol.2010.11.036 |
[28] |
Anibas C, Fleckenstein J H, Volze N, et al.2009. Transient or steady-state? Using vertical temperature profiles to quantify groundwater-surface water exchange[J]. Hydrological Processes, 23(15): 2165-2177.
doi: 10.1002/hyp.7289 |
[103] | Simpson S C, Meixner T.2012. Modeling effects of floods on streambed hydraulic conductivity and groundwater-surface water interactions[J]. Water Resources Research, 48(2): W02515. |
[104] |
Šimůnek J, van Genuchten M T.2008. Modeling nonequilibrium flow and transport processes using HYDRUS[J]. Vadose Zone Journal, 7(2): 782-797.
doi: 10.2136/vzj2007.0074 |
[29] |
Anibas C, Schneidewind U, Vandersteen G, et al.2016. From streambed temperature measurements to spatial-temporal flux quantification: Using the LPML method to study groundwater-surface water interaction[J]. Hydrological Processes, 30(2): 203-216.
doi: 10.1002/hyp.10588 |
[30] | Brooks R H, Corey A T.1964. Hydraulic properties of porous media[R]. Hydrology papers. Fort Collins, Colorado: Colorado State University: 25. |
[105] |
Šimůnek J, van Genuchten M T, Šejna M.2008. Development and applications of the HYDRUS and STANMOD software packages and related codes[J]. Vadose Zone Journal, 7(2): 587-600.
doi: 10.2136/vzj2007.0077 |
[106] |
Šimůnek J, van Genuchten M T, Šejna M.2016. Recent developments and applications of the HYDRUS computer software packages[J]. Vadose Zone Journal, 15(7): 25.
doi: 10.2136/vzj2016.04.0033 |
[31] |
Brunner P, Cook P G, Simmons C T.2009. Hydrogeologic controls on disconnection between surface water and groundwater[J]. Water Resources Research, 45(1): W01422.
doi: 10.1029/2008WR006953 |
[32] |
Brunner P, Cook P G, Simmons C T.2011. Disconnected surface water and groundwater: From theory to practice[J]. Ground Water, 49(4): 460-467.
doi: 10.1111/j.1745-6584.2010.00752.x pmid: 20849421 |
[107] |
Song J X, Chen X H, Cheng C, et al.2009. Feasibility of grain-size analysis methods for determination of vertical hydraulic conductivity of streambeds[J]. Journal of Hydrology, 375(3-4): 428-437.
doi: 10.1016/j.jhydrol.2009.06.043 |
[108] |
Song J X, Chen X H, Cheng C.2010. Observation of bioturbation and hyporheic flux in streambeds[J]. Frontiers of Environmental Science & Engineering in China, 4(3): 340-348.
doi: 10.1007/s11783-010-0233-y |
[33] |
Brunner P, Therrien R, Renard P, et al.2017. Advances in understanding river-groundwater interactions[J]. Reviews of Geophysics, 55(3): 818-854.
doi: 10.1002/2017RG000556 |
[34] |
Caissie D, Luce C H.2017. Quantifying streambed advection and conduction heat fluxes[J]. Water Resources Research, 53(2): 1595-1624.
doi: 10.1002/2016WR019813 |
[109] |
Tang Q, Kurtz W, Schilling O S, et al.2017. The influence of riverbed heterogeneity patterns on river-aquifer exchange fluxes under different connection regimes[J]. Journal of Hydrology, 554: 383-396.
doi: 10.1016/j.jhydrol.2017.09.031 |
[110] |
Tian Y, Zheng Y, Wu B, et al.2015. Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture[J]. Environmental Modelling & Software, 63: 170-184.
doi: 10.1016/j.envsoft.2014.10.011 |
[35] |
Calver A.2001. Riverbed permeabilities: Information from pooled data[J]. Ground Water, 39(4): 546-553.
doi: 10.1111/j.1745-6584.2001.tb02343.x pmid: 11447855 |
[36] |
Chen W F, Huang C, Chang M, et al.2013. The impact of floods on infiltration rates in a disconnected stream[J]. Water Resources Research, 49(12): 7887-7899.
doi: 10.1002/2013WR013762 |
[111] |
Tian Y, Zheng Y, Zheng C M, et al.2015. Exploring scale-dependent ecohydrological responses in a large endorheic river basin through integrated surface water-groundwater modeling[J]. Water Resources Research, 51(6): 4065-4085.
doi: 10.1002/2015WR016881 |
[112] |
Tooth S.2000. Process, form and change in dryland rivers: A review of recent research[J]. Earth-Science Reviews, 51(1-4): 67-107.
doi: 10.1016/S0012-8252(00)00014-3 |
[37] |
Chen X H.2000. Measurement of streambed hydraulic conductivity and its anisotropy[J]. Environmental Geology, 39(12): 1317-1324.
doi: 10.1007/s002540000172 |
[38] |
Chen X H.2004. Streambed hydraulic conductivity for rivers in south-central Nebraska[J]. Journal of the American Water Resources Association, 40(3): 561-573.
doi: 10.1111/j.1752-1688.2004.tb04443.x |
[113] |
Turner K W, Edwards T W D, Wolfe B B.2014. Characterising runoff generation processes in a lake-rich thermokarst landscape (Old Crow Flats, Yukon, Canada) using δ18O, δ2H and d-excess measurements[J]. Permafrost and Periglacial Processes, 25(1): 53-59.
doi: 10.1002/ppp.v25.1 |
[114] |
van Genuchten M T.1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44(5): 892-898.
doi: 10.2136/sssaj1980.03615995004400050002x |
[115] |
Vandersteen G, Schneidewind U, Anibas C, et al.2015. Determining groundwater-surface water exchange from temperature-time series: Combining a local polynomial method with a maximum likelihood estimator[J]. Water Resources Research, 51(2): 922-939.
doi: 10.1002/2014WR015994 |
[116] |
Villeneuve S, Cook P G, Shanafield M, et al.2015. Groundwater recharge via infiltration through an ephemeral riverbed, central Australia[J]. Journal of Arid Environments, 117: 47-58.
doi: 10.1016/j.jaridenv.2015.02.009 |
[117] |
Vogt T, Schirmer M, Cirpka O A.2012. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution[J]. Hydrology and Earth System Sciences, 16(2): 473-487.
doi: 10.5194/hess-16-473-2012 |
[118] |
Vogt T, Schneider P, Hahn-Woernle L, et al.2010. Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling[J]. Journal of Hydrology, 380(1-2): 154-164.
doi: 10.1016/j.jhydrol.2009.10.033 |
[119] |
Walvoord M A, Striegl R G.2007. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen[J]. Geophysical Research Letters, 34(12): L12402.
doi: 10.1029/2007GL030216 |
[120] |
Wang G X, Hu H C, Li T B.2009. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed[J]. Journal of Hydrology, 375(3-4): 438-449.
doi: 10.1016/j.jhydrol.2009.06.046 |
[121] |
Wang P, Pozdniakov S P, Shestakov V M.2015. Optimum experimental design of a monitoring network for parameter identification at riverbank well fields[J]. Journal of Hydrology, 523: 531-541.
doi: 10.1016/j.jhydrol.2015.02.004 |
[122] |
Wang P, Pozdniakov S P, Vasilevskiy P Y.2017. Estimating groundwater-ephemeral stream exchange in hyper-arid environments: Field experiments and numerical simulations[J]. Journal of Hydrology, 555: 68-79.
doi: 10.1016/j.jhydrol.2017.10.004 |
[123] |
Wang P, Yu J J, Pozdniakov S P, et al.2014. Shallow groundwater dynamics and its driving forces in extremely arid areas: A case study of the lower Heihe River in northwestern China[J]. Hydrological Processes, 28(3): 1539-1553.
doi: 10.1002/hyp.9682 |
[124] |
Wang P, Yu J J, Zhang Y C, et al.2011. Impacts of environmental flow controls on the water table and groundwater chemistry in the Ejina Delta, northwestern China[J]. Environmental Earth Sciences, 64(1): 15-24.
doi: 10.1007/s12665-010-0811-0 |
[125] |
Wang P, Zhang Y C, Yu J J, et al.2011. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, northwestern China[J]. Journal of Plant Ecology, 4(1-2): 77-90.
doi: 10.1093/jpe/rtr002 |
[126] |
Wang W K, Dai Z X, Zhao Y Q, et al.2016. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems[J]. Scientific Reports, 6: 19876.
doi: 10.1038/srep19876 pmid: 4730216 |
[127] |
Weber M D, Booth E G, Loheide S P.2013. Dynamic ice formation in channels as a driver for stream-aquifer interactions[J]. Geophysical Research Letters, 40(13): 3408-3412.
doi: 10.1002/grl.50620 |
[128] | Wheater H S, Mathias S A, Li X.2010. Groundwater modelling in arid and semi-arid areas[M]. Cambridge, UK: Cambridge University Press. |
[129] |
Winter T C.1995. Recent advances in understanding the interaction of groundwater and surface water[J]. Reviews of Geophysics, 33(S2): 985-994.
doi: 10.1029/95RG00115 |
[130] |
Wu B, Zheng Y, Wu X, et al.2015. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach[J]. Water Resources Research, 51(4): 2153-2173.
doi: 10.1002/2014WR016653 |
[131] |
Wu G D, Shu L C, Lu C P, et al.2015. Variations of streambed vertical hydraulic conductivity before and after a flood season[J]. Hydrogeology Journal, 23(7): 1603-1615.
doi: 10.1007/s10040-015-1275-9 |
[132] |
Xi H Y, Zhang L, Feng Q, et al.2015. The spatial heterogeneity of riverbed saturated permeability coefficient in the lower reaches of the Heihe River Basin, Northwest China[J]. Hydrological Processes, 29(23): 4891-4907.
doi: 10.1002/hyp.10544 |
[133] |
Xie Y Q, Cook P G, Brunner P, et al.2014. When can inverted water tables occur beneath streams[J]. Groundwater, 52(5): 769-774.
doi: 10.1111/gwat.12109 pmid: 24032399 |
[134] | Yager R M.1993. Estimation of hydraulic conductivity of a riverbed and aquifer system on the Susquehanna River in Broome County, New York[R]. USGS water supply paper 2387. New York: U.S. Geological Survey. |
[135] |
Yao Y Y, Huang X, Liu J, et al.2015. Spatiotemporal variation of river temperature as a predictor of groundwater/surface-water interactions in an arid watershed in China[J]. Hydrogeology Journal, 23(5): 999-1007.
doi: 10.1007/s10040-015-1265-y |
[136] |
Yao Y Y, Zheng C M, Liu J, et al.2015. Conceptual and numerical models for groundwater flow in an arid inland river basin[J]. Hydrological Processes, 29(6): 1480-1492.
doi: 10.1002/hyp.10276 |
[137] |
Yao Y Y, Zheng C M, Tian Y, et al.2015. Numerical modeling of regional groundwater flow in the Heihe River Basin, China: Advances and new insights[J]. Science China Earth Sciences, 58(1): 3-15.
doi: 10.1007/s11430-014-5033-y |
[138] |
Zhang Y C, Yu J J, Wang P, et al.2011. Vegetation responses to integrated water management in the Ejina basin, northwest China[J]. Hydrological Processes, 25(22): 3448-3461.
doi: 10.1002/hyp.8073 |
|