PROGRESS IN GEOGRAPHY ›› 2017, Vol. 36 ›› Issue (11): 1359-1367.doi: 10.18306/dlkxjz.2017.11.005
• Orginal Article • Previous Articles Next Articles
Xun ZHANG1,3(), Jianzhang CHEN1, Jinchuan HUANG2,3,4,*(
), Chongchong YU1, Xiuxin CHEN1
Online:
2017-12-07
Published:
2017-12-07
Contact:
Jinchuan HUANG
E-mail:zhangxun@btbu.edu.cn;huangjc@igsnrr.ac.cn
Supported by:
Xun ZHANG, Jianzhang CHEN, Jinchuan HUANG, Chongchong YU, Xiuxin CHEN. Multi-level spatial structure analysis of urban agglomeration in the Beijing-Tianjin-Hebei region based on spatial clustering algorithms[J].PROGRESS IN GEOGRAPHY, 2017, 36(11): 1359-1367.
Tab.1
Urban districts of provincial-level municipalities and prefectural-level cities"
城区名称 | 包含区 |
---|---|
北京城区 | 东城区、西城区、朝阳区、丰台区、海淀区、石景山区 |
天津城区 | 和平区、河东区、河西区、南开区、河北区、红桥区 |
保定城区 | 莲池区、竞秀区(含高新区)、徐水区、清苑区、满城区 |
沧州城区 | 新华区、运河区 |
承德城区 | 双桥区、双滦区、高新区、营子区 |
邢台城区 | 桥东区、桥西区 |
张家口城区 | 桥东区、桥西区、宣化区、下花园区、万全区、崇礼区 |
唐山城区 | 路北区、路南区、古冶区、开平区、丰润区、丰南区、曹妃甸区 |
石家庄城区 | 桥西区、新华区、长安区、裕华区、井陉矿区、藁城区、鹿泉区、栾城区 |
廊坊城区 | 安次区、广阳区 |
邯郸城区 | 丛台区、复兴区、邯山区、峰峰矿区 |
秦皇岛城区 | 海港区、山海关区、北戴河区、抚宁区 |
Tab.4
Results of the four cluster algorithms"
第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 | |
---|---|---|---|---|---|---|
K-means | 北京市城区等3个区县 | 保定市城区等8个区县 | 北辰区等9个区县 | 霸州市等40个区县 | 安国县等96个区县 | |
Chameleon | 成安县等10个区县 | 霸州市等19个区县 | 安平县等25个区县 | 北京市城区等22个区县 | 安新县等35个区县 | 安国市等40个区县 |
DBSCAN | 固安县等6个区县 | 隆化县等6个区县 | 广宗县等7个区县 | 滦平县等7个区县 | 大名县等15个区县 | 噪声数据(115个区县) |
SOM | 北京市城区 | 石家庄、天津市城区 | 保定市城区等21个区县 | 霸州市等42个区县 | 安国市等90个区县 |
Tab.5
Average values of every level of districts and counties after normalization"
人口 | GDP | 路网密度 | 吸引因子 | 微博签到数 | |
---|---|---|---|---|---|
第一级 | 1.000000 | 1.000000 | 0.566022 | 0.925568 | 1.000000 |
第二级 | 0.187632 | 0.323590 | 0.712439 | 0.824197 | 0.089826 |
第三级 | 0.079778 | 0.066928 | 0.263885 | 0.202920 | 0.016356 |
第四级 | 0.015132 | 0.036220 | 0.096532 | 0.052529 | 0.003622 |
第五级 | 0.008050 | 0.025172 | 0.048087 | 0.013577 | 0.000620 |
[1] | 陈园园, 李宁, 丁四保. 2011. 城市群空间联系能力与SOM 神经网络分级研究: 以辽中南城市群为例[J]. 地理科学, 31(12): 1461-1467. |
[Chen Y Y, Li N, Ding S B.2011. Spatial combination capacity and classification based on SOM network of urban agglomerations: A case study of central and southern Liaoning urban agglomerations[J]. Scientia Geographica Sinica, 31(12): 1461-1467.] | |
[2] |
方碧琪, 汪永新. 1991. 北京市各区县经济分析的聚类方法[J]. 数理统计与管理, (1): 25-30.
doi: 10.3969/j.issn.1002-1566.1999.01.006 |
[Fang B Q, Wang Y X.1991. Clustering analysis on the economy of Beijing regions[J]. Application of Statistics and Management, (1): 25-30.]
doi: 10.3969/j.issn.1002-1566.1999.01.006 |
|
[3] |
顾朝林, 王颖, 邵园, 等. 2015. 基于功能区的行政区划调整研究: 以绍兴城市群为例[J]. 地理学报, 70(8): 1187-1201.
doi: 10.11821/dlxb201508001 |
[Gu C L, Wang Y, Shao Y, et al.2015. Research on administrative divisions based on functional areas analysis: A case of Shaoxing metropolitan area[J]. Acta Geographica Sinica, 70(8): 1187-1201.]
doi: 10.11821/dlxb201508001 |
|
[4] |
韩玉刚, 叶雷. 2016. 中国欠发达省际边缘区核心城市的选择与区域带动效应: 以豫皖省际边缘区为例[J]. 地理研究, 35(6): 1127-1140.
doi: 10.11821/dlyj201606010 |
[Han Y G, Ye L.2016. Core city selection in Chinese undeveloped provincial border-region and its promoting effects on regional development: A case study of Anhui-Henan Provincial Border-region[J]. Geographical Research, 35(6): 1127-1140.]
doi: 10.11821/dlyj201606010 |
|
[5] | 黄金川, 刘倩倩, 陈明. 2014. 基于GIS的中国城市群发育格局识别研究[J]. 城市规划学刊, (3): 37-44. |
[Huang J C, Liu Q Q, Chen M.2014. The identification of urban agglomeration distribution in China based on GIS analysis[J]. Urban Planning Forum, (3): 37-44.] | |
[6] | 金建国. 2014. 聚类方法综述[J]. 计算机科学, 41(Z2): 288-293. |
[Jin J G.2014. Review of clustering method[J]. Computer Science, 41(Z2): 288-293.] | |
[7] |
李国平, 罗心然. 2017. 京津冀地区人口与经济协调发展关系研究[J]. 地理科学进展, 36(1): 25-33.
doi: 10.18306/dlkxjz.2017.01.003 |
[Li G P, Luo X R.2017. Coordinated development between population and economy in the Beijing-Tianjin-Hebei region[J]. Progress in Geography, 36(1): 25-33.]
doi: 10.18306/dlkxjz.2017.01.003 |
|
[8] |
李新延, 李德仁. 2005. DBSCAN空间聚类算法及其在城市规划中的应用[J]. 测绘科学, 30(3): 51-53.
doi: 10.3771/j.issn.1009-2307.2005.03.014 |
[Li X Y, Li D R.2005. DBSCAN spatial clustering algorithm and its application in urban planning[J]. Science of Surveying and Mapping, 30(3): 51-53.]
doi: 10.3771/j.issn.1009-2307.2005.03.014 |
|
[9] |
刘卫东, 金凤君, 张文忠, 等. 2011. 中国经济地理学研究进展与展望[J]. 地理科学进展, 30(12): 1479-1487.
doi: 10.11820/dlkxjz.2011.12.003 |
[Liu W D, Jin F J, Zhang W Z, et al.2011. Progress in economic geography (2006-2011)[J]. Progress in Geography, 30(12): 1479-1487.]
doi: 10.11820/dlkxjz.2011.12.003 |
|
[10] |
马林靖, 周立群. 2010. 基于聚类分析法的县域均衡发展指数构建与测度应用研究: 以天津12个涉农区县为例[J]. 经济经纬, (2): 57-60.
doi: 10.3969/j.issn.1006-1096.2010.02.014 |
[Ma L J, Zhou L Q.2010. A research into the construction and measurement of county balanced development indexes and its application based on cluster analysis method[J]. Economic Survey, (2): 57-60.]
doi: 10.3969/j.issn.1006-1096.2010.02.014 |
|
[11] |
牛方曲, 刘卫东, 宋涛, 等. 2015. 城市群多层次空间结构分析算法及其应用:以京津冀城市群为例[J]. 地理研究, 34(8): 1447-1460.
doi: 10.11821/dlyj201508004 |
[Niu F Q, Liu W D, Song T, et al.2015. A multi-level spatial structure analysis algorithm for urban agglomeration study in China[J]. Geographical Research, 34(8): 1447-1460.]
doi: 10.11821/dlyj201508004 |
|
[12] | 王波, 甄峰. 2016. 网络社区交流中距离的作用: 以新浪微博为例[J]. 地理科学进展, 35(8): 983-989. |
[Wang B, Zhen F.2016. The role of distance in online social networks: A case study of Sina micro-blog[J]. Progress in Geography, 35(8): 983-989.] | |
[13] |
闫友彪, 陈元琰. 2004. 机器学习的主要策略综述[J]. 计算机应用研究, 21(7): 4-10, 13.
doi: 10.3969/j.issn.1001-3695.2004.07.002 |
[Yan Y B, Chen Y Y.2004. A survey on machine learning and its main strategy[J]. Application Research of Computers, 21(7): 4-10, 13.]
doi: 10.3969/j.issn.1001-3695.2004.07.002 |
|
[14] | 杨志民, 化祥雨, 叶娅芬, 等. 2015. 金融空间联系及K-means聚类中心等级识别研究: 以长三角为例[J]. 地理科学, 35(2): 144-150. |
[Yang Z M, Hua X Y, Ye Y F, et al.2015. Spatial combination of finance and center level identify based on K-means clustering: A case study of the Changjiang river delta[J]. Scientia Geographica Sinica, 35(2): 144-150.] | |
[15] |
袁媛, 王仰麟, 马晶, 等. 2014. 河北省县域贫困度多维评估[J]. 地理科学进展, 33(1): 124-133.
doi: 10.11820/dlkxjz.2014.01.014 |
[Yuan Y, Wang Y L, Ma J, et al.2014. Multidimensional evaluation of county poverty degree in Hebei Province[J]. Progress in Geography, 33(1): 124-133.]
doi: 10.11820/dlkxjz.2014.01.014 |
|
[16] |
张旺, 申玉铭. 2012. 京津冀都市圈生产性服务业空间集聚特征[J]. 地理科学进展, 31(6): 742-749.
doi: 10.11820/dlkxjz.2012.06.010 |
[Zhang W, Shen Y M.2012. The spatial characteristics of producer service agglomeration in Beijing-Tianjin-Hebei metropolitan region[J]. Progress in Geography, 31(6): 742-749.]
doi: 10.11820/dlkxjz.2012.06.010 |
|
[17] |
周一星, 张莉, 武悦. 2001. 城市中心性与我国城市中心性的等级体系[J]. 地域研究与开发, 20(4): 1-5.
doi: 10.3969/j.issn.1003-2363.2001.04.001 |
[Zhou Y X, Zhang L, Wu Y.2001. Study of China's urban centrality hierarchy[J]. Areal Research and Development, 20(4): 1-5.]
doi: 10.3969/j.issn.1003-2363.2001.04.001 |
|
[18] | Bação F, Lobo V, Painho M.2005. Self-organizing maps as substitutes for K-means clustering[C]//Proceedings of the 5th international conference on computational science. Berlin, Heidelberg, Germany: Springer-Verlag: 476-483. |
[19] | Baselice F, Coppolino L, D'Antonio S, et al.2015. A DBSCAN based approach for jointly segment and classify brain MR images[C]// Proceedings of the 37th International Conference of the IEEE Engineering in Medicine and Biology Society. Milan, Italy. |
[20] |
Bell T L, Lieber S R, Rushton G.2015. Clusterg of services in central places[J]. Annals of the Association of American Geographers, 64(2): 214-225.
doi: 10.1111/j.1467-8306.1974.tb00972.x |
[21] | Duda R O, Hart P E, Stork D G.2001. Pattern classification[M]. 2nd ed. New York, NY: A Wiley-Interscience Publication, 2001. |
[22] |
Ferrari D C, de Castro L N.2015. Clustering algorithm selection by meta-learning systems: A new distance-based problem characterization and ranking combination methods[J]. Information Sciences, 301: 181-194.
doi: 10.1016/j.ins.2014.12.044 |
[23] | Gong W W.2010. ARMA-GRNN for passenger demand forecasting[C]//2010 Sixth international conference on natural computation (ICNC). Yantai, China: IEEE. |
[24] |
Gómeza D, Zarrazolab E, Yáñezc J, et al.2015. A Divide-and-Link algorithm for hierarchical clustering in networks[J]. Information Science, 316: 308-328.
doi: 10.1016/j.ins.2015.04.011 |
[25] |
Grubesic T H, Wei R, Murray A T.2014. Spatial clustering overview and comparison: Accuracy, sensitivity, and computational expense[J]. Annals of the Association of American Geographers, 104(6): 1134-1156.
doi: 10.1080/00045608.2014.958389 |
[26] |
Hagen L, Kahng A B.2006. New spectral methods for ratio cut partitioning and clustering[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(9): 1074-1085.
doi: 10.1109/43.159993 |
[27] | Kohonen T.1990. The self-organizing map[J]. Neurocomputing, 21(1-3): 1-6. |
[28] |
Lin G F, Wu M C.2007. A SOM-based approach to estimating design hyetographs of ungauged sites[J]. Journal of Hydrology, 339(3-4): 216-226.
doi: 10.1016/j.jhydrol.2007.03.016 |
[29] | Marshall J U.1989. The structure of urban systems[M]. Toronto, Canada: University of Toronto Press. |
[30] |
Preston R E.1970. Two centrality models[J]. Yearbook of the Association of Pacific Coast Geographers, 32: 59-78.
doi: 10.1353/pcg.1970.0006 |
[31] |
Zhou Y H, Guo H, Dong Y S, et al.2011. Cluster analysis for drilling-quality based on the modified algorithm of InDBSCAN[J]. Key Engineering Materials, 480-481: 877-882.
doi: 10.4028/www.scientific.net/KEM.480-481.877 |
|