PROGRESS IN GEOGRAPHY ›› 2017, Vol. 36 ›› Issue (9): 1158-1166.doi: 10.18306/dlkxjz.2017.09.012
• Special Issue: Urban Cultural Sensing and Computing • Previous Articles Next Articles
Sihui GUO1,2,3(), Congcong WEN3,4, Yun HE1,2,3, Tao PEI1,2,*(
)
Online:
2017-09-27
Published:
2017-09-27
Contact:
Tao PEI
E-mail:guosh@lreis.ac.cn;peit@lreis.ac.cn
Supported by:
Sihui GUO, Congcong WEN, Yun HE, Tao PEI. Relationship between travel behavior and income level of urban residents:A case study in Shanghai Municipality[J].PROGRESS IN GEOGRAPHY, 2017, 36(9): 1158-1166.
Tab.3
Average monthly salary in the districts of Shanghai Municipality"
地区 | 月平均工资/元 | 样本企业个数 | 地区 | 月平均工资/元 | 样本企业个数 |
---|---|---|---|---|---|
金山区 | 4590 | 80 | 宝山区 | 5340 | 214 |
虹口区 | 4890 | 250 | 嘉定区 | 5560 | 258 |
杨浦区 | 5200 | 282 | 松江区 | 5680 | 1584 |
青浦区 | 5230 | 166 | 普陀区 | 5790 | 432 |
奉贤区 | 5240 | 159 | 徐汇区 | 5960 | 477 |
闵行区 | 5280 | 422 | 浦东新区 | 5980 | 617 |
长宁区 | 5300 | 290 | 黄浦区 | 6100 | 258 |
崇明县 | 5310 | 103 | 静安区 | 7240 | 380 |
Tab.4
Principal component analysis by maximum variance rotation"
相关系数 | 节假日 | 工作日 | ||||||
---|---|---|---|---|---|---|---|---|
成分1 | 成分2 | 成分3 | 成分1 | 成分2 | 成分3 | |||
居民活动特征指标 | 地点个数 | 0.843 | 0.191 | 0.345 | 0.947 | -0.118 | ||
移动熵 | 0.946 | 0.193 | -0.551 | 0.885 | 0.130 | 0.395 | ||
空间多样性 | 0.730 | 0.490 | 0.812 | |||||
回旋半径 | 0.283 | 0.893 | 0.179 | 0.930 | ||||
最远距离 | 0.398 | 0.872 | 0.383 | 0.869 | ||||
平均出行距离 | 0.555 | 0.741 | 0.698 | 0.627 | ||||
职住距离 | -0.220 | 0.604 | -0.155 | 0.622 | 0.131 | |||
地点频次 | 0.925 | -0.167 | -0.912 | |||||
方差解释 | 方差解释度 | 0.342 | 0.320 | 0.165 | 0.326 | 0.307 | 0.211 | |
累计方差解释度 | 0.342 | 0.662 | 0.827 | 0.326 | 0.633 | 0.845 |
Tab.5
Average mobility indicator values and average monthly salary of each clustering group during weekdays"
类别 | 地点个数 | 移动熵 | 空间多样性 | 回旋半径/m | 最远距离/m | 平均出行距离/m | 职住距离/m | 月平均工资/元 |
---|---|---|---|---|---|---|---|---|
3 | 6.12 | 1.38 | 1.89 | 1235.65 | 3265.69 | 1447.18 | 1449.56 | 5841.57 |
10 | 9.71 | 1.92 | 2.05 | 3804.35 | 10562.14 | 5270.43 | 3961.99 | 5821.59 |
4 | 11.24 | 2.16 | 2.15 | 6341.63 | 18256.65 | 9729.46 | 6304.11 | 5780.97 |
9 | 12.20 | 2.31 | 2.22 | 9265.10 | 27781.88 | 14510.48 | 7496.84 | 5757.01 |
5 | 16.04 | 2.75 | 2.41 | 14630.49 | 46858.75 | 28486.24 | 10598.36 | 5749.18 |
1 | 13.98 | 2.53 | 2.32 | 11889.93 | 36941.71 | 20799.34 | 8860.73 | 5745.92 |
8 | 19.29 | 3.08 | 2.53 | 16699.62 | 55862.56 | 39102.57 | 12831.57 | 5730.38 |
2 | 22.57 | 3.37 | 2.62 | 18836.34 | 65044.98 | 52204.91 | 16626.65 | 5720.75 |
7 | 24.97 | 3.58 | 2.68 | 21438.91 | 76405.06 | 69622.45 | 20768.52 | 5698.25 |
6 | 26.47 | 3.70 | 2.69 | 25747.73 | 94385.03 | 96397.05 | 27879.74 | 5637.16 |
Tab.6
Average mobility indicator values and average monthly salary of each clustering group during holidays"
类别 | 地点个数 | 移动熵 | 空间多样性 | 回旋半径/m | 最远距离/m | 平均出行距离/m | 职住距离/m | 月平均工资/元 |
---|---|---|---|---|---|---|---|---|
1 | 3.35 | 0.89 | 1.58 | 734.18 | 1772.68 | 1347.97 | 3118.66 | 5824.24 |
8 | 5.92 | 1.58 | 2.17 | 3415.76 | 8578.54 | 6808.19 | 6871.25 | 5793.82 |
7 | 6.98 | 1.86 | 2.38 | 6580.40 | 16868.21 | 14122.77 | 7912.96 | 5758.87 |
4 | 7.75 | 2.04 | 2.47 | 10134.06 | 26699.50 | 22858.12 | 8794.92 | 5743.65 |
2 | 8.86 | 2.25 | 2.57 | 13336.10 | 36107.52 | 33590.36 | 10166.70 | 5739.76 |
6 | 10.04 | 2.46 | 2.65 | 16609.67 | 46314.27 | 46325.09 | 12064.22 | 5738.16 |
9 | 11.37 | 2.67 | 2.71 | 19539.39 | 56282.00 | 63042.27 | 15180.39 | 5722.99 |
5 | 13.09 | 2.93 | 2.78 | 22379.24 | 67260.64 | 87637.96 | 18822.01 | 5700.55 |
3 | 14.26 | 3.10 | 2.83 | 26726.16 | 83624.84 | 128193.00 | 22658.60 | 5669.64 |
[1] |
丁亮, 钮心毅, 宋小冬. 2017. 上海中心城区商业中心空间特征研究[J]. 城市规划学刊, (1): 63-70.
doi: 10.16361/j.upf.201701008 |
[Ding L, Niu X Y, Song X D.2017. A study on spatial characteristics of commercial centers in the Shanghai central city[J]. Urban Planning Forum, (1): 63-70.]
doi: 10.16361/j.upf.201701008 |
|
[2] | 丁威, 杨晓光, 伍速锋. 2008. 基于活动的居民出行行为研究综述[J]. 人文地理, (3): 85-91. |
[Ding W, Yang X G, Wu S F.2008. A review of activity-based travel behavior research[J]. Human Geography, (3): 85-91.] | |
[3] |
高见, 周涛. 2016. 大数据揭示经济发展状况[J]. 电子科技大学学报, 45(4): 625-633.
doi: 10.3969/j.issn.1001-0548.2016.04.015 |
[Gao J, Zhou T.2016. Big data reveal the status of economic development[J]. Journal of University of Electronics Science and Technology of China, 45(4): 625-633.]
doi: 10.3969/j.issn.1001-0548.2016.04.015 |
|
[4] |
陆锡明, 顾啸涛. 2011. 上海市第五次居民出行调查与交通特征研究[J]. 城市交通, 9(5): 1-7.
doi: 10.3969/j.issn.1672-5328.2011.05.001 |
[Lu X M, Gu X T.2011. The fifth travel survey of residents in Shanghai and characteristics analysis[J]. Urban Transport of China, 9(5): 1-7.]
doi: 10.3969/j.issn.1672-5328.2011.05.001 |
|
[5] | 张文尝, 王成金, 马清裕. 2007. 中国城市居民出行的时空特征及影响因素研究[J]. 地理科学, 27(6): 737-742. |
[Zhang W C, Wang C J, Ma Q Y.2007. Spatial-temporal characteristics of urban resident trips and influence factors in China[J]. Scientia Geographica Sinica, 27(6): 737-742.] | |
[6] | 周素红, 邓丽芳. 2010. 基于T-GIS的广州市居民日常活动时空关系[J]. 地理学报, 65(12): 1454-1463. |
[Zhou S H, Deng L F.2010. Spatio-temporal pattern of residents' daily activities based on T-GIS: A case study in Guangzhou, China[J]. Acta Geographica Sinica, 65(12): 1454-1463.] | |
[7] |
Blumenstock J, Cadamuro G, On R.2015. Predicting poverty and wealth from mobile phone metadata[J]. Science, 350: 1073-1076.
doi: 10.1126/science.aac4420 pmid: 26612950 |
[8] |
Brockmann D, Hufnagel L, Geisel T.2006. The scaling laws of human travel[J]. Nature, 439: 462-465.
doi: 10.1038/nature04292 pmid: 16437114 |
[9] |
Calabrese F, Mi D, Lorenzo G D, et al.2013. Understanding individual mobility patterns from urban sensing data: A mobile phone trace example[J]. Transportation Research Part C: Emerging Technologies, 26(1): 301-313.
doi: 10.1016/j.trc.2012.09.009 |
[10] |
Caliński T, Harabasz J.1974. A dendrite method for cluster analysis[J]. Communications in Statistics, 3(1): 1-27.
doi: 10.1080/03610927408827101 |
[11] |
Cliff N.1988. The eigenvalues-greater-than-one rule and the reliability of components[J]. Psychological Bulletin, 103(2): 276-279.
doi: 10.1037/0033-2909.103.2.276 |
[12] | Eagle N, Macy M, Claxton R.2010. Network diversity and economic development[J]. Science, 328: 1029-1031. |
[13] | Frias-Martinez V, Soguero-Ruiz C, Frias-Martinez E, et al.2013. Forecasting socioeconomic trends with cell phone records[C]//Proceedings of the 3rd ACM symposium on computing for development. Bangalore, India: ACM: 15. |
[14] |
Giannotti F, Nanni M, Pedreschi D, et al.2011. Unveiling the complexity of human mobility by querying and mining massive trajectory data[J]. The VLDB Journal, 20(5): 695-719.
doi: 10.1007/s00778-011-0244-8 |
[15] |
González M C, Hidalgo C A, Barabási A L.2008. Understanding individual human mobility patterns[J]. Nature, 453: 779-782.
doi: 10.1038/nature06958 pmid: 18528393 |
[16] | Kaiser H F.1991. Coefficient alpha for a principal component and the Kaiser-Guttman rule[J]. Psychological Reports, 68(3): 855-858. |
[17] | Kang C, Gao S, Lin X, et al.2010. Analyzing and geo-visualizing individual human mobility patterns using mobile call records[C]//Geoinformatics, 2010 18th international conference on Geoinformatics. IEEE: 1-7. |
[18] |
Rencher A C.1992. Interpretation of canonical discriminant functions, canonical variates, and principal components[J]. The American Statistician, 46(3): 217-225.
doi: 10.2307/2685219 |
[19] | Smith-Clarke C, Mashhadi A, Capra L.2014. Poverty on the cheap: Estimating poverty maps using aggregated mobile communication networks[C]//Proceedings of the SIGCHI conference on human factors in computing systems. Toronto, Canada: ACM: 511-520. |
[20] | Song C M, Qu Z H, Blumm N, et al.2010. Limits of predictability in human mobility[J]. Science, 327: 1018-1021. |
[21] | Soto V, Frias-Martinez V, Virseda J, et al.2011. Prediction of socioeconomic levels using cell phone records[C]//Proceedings of the 19th international conference on user modeling, adaption and personalization. Berlin Heidelberg, Germany: Springer: 377-388. |
[22] |
Yuan Y H, Raubal M, Liu Y.2012. Correlating mobile phone usage and travel behavior: A case study of Harbin, China[J]. Computers, Environment and Urban Systems, 36(2): 118-130.
doi: 10.1016/j.compenvurbsys.2011.07.003 |
|