PROGRESS IN GEOGRAPHY ›› 2017, Vol. 36 ›› Issue (7): 873-885.doi: 10.18306/dlkxjz.2017.07.009
• Orginal Article • Previous Articles Next Articles
Zhiying LI1,2(), Haiyan FANG1,2,*(
)
Online:
2017-07-31
Published:
2017-07-31
Contact:
Haiyan FANG
E-mail:lizy.14s@igsnrr.ac.cn;fanghy@igsnrr.ac.cn
Supported by:
Zhiying LI, Haiyan FANG. Simulation of runoff, soil erosion, and sediment yield using the TETIS model in the Wuyuer River Basin of the black soil region, Northeast China[J].PROGRESS IN GEOGRAPHY, 2017, 36(7): 873-885.
Tab.5
Characteristics of soil erosion for different slopes in the Wuyuer River Basin"
坡度分级/° | 面积 /km2 | 百分比 /% | 侵蚀量 /(104 t/a) | 平均侵蚀模数 /[t/(km2·a)] |
---|---|---|---|---|
0~5 | 6262.12 | 85.01 | 210.40 | 335.98 |
5~8 | 748.36 | 10.16 | 56.35 | 752.93 |
8~15 | 316.20 | 4.29 | 23.33 | 738.05 |
15~25 | 38.04 | 0.52 | 2.28 | 599.76 |
25~35 | 1.44 | 0.02 | 0.15 | 1054.17 |
>35 | 0.28 | / | 0.09 | 3307.14 |
合计 | 7366.44 | / | 292.60 | 397.21 |
Tab.6
Characteristics of soil erosion for different land use types in the Wuyuer River Basin"
土地利用类型 | 面积/km2 | 百分比/% | 侵蚀量/(104 t/a) | 平均侵蚀模数/[t/(km2·a)] |
---|---|---|---|---|
耕地 | 4704.32 | 63.86 | 261.68 | 556.25 |
林地 | 1007.00 | 13.67 | 11.64 | 115.62 |
草地 | 352.36 | 4.78 | 8.50 | 241.38 |
水域 | 76.56 | 0.7 | 0.34 | 44.41 |
城乡、工矿、居民用地 | 271.20 | 3.68 | 5.31 | 195.73 |
未利用土地 | 955.00 | 12.96 | 5.13 | 53.75 |
总计 | 7366.44 | / | 292.60 | 397.21 |
1 | 陈云明, 刘国彬, 郑粉莉, 等. 2004. RUSLE侵蚀模型的应用及进展[J]. 水土保持研究, 11(4): 80-83. |
[Chen Y M, Liu G B, Zheng F L, et al.2004. Proceeding and application on soil erosion model of RUSLE[J]. Research of Soil and Water Conservation, 11(4): 80-83.] | |
2 |
崔明, 张旭东, 蔡强国, 等. 2008. 东北典型黑土区气候、地貌演化与黑土发育关系[J]. 地理研究, 27(3): 527-535.
doi: 10.3321/j.issn:1000-0585.2008.03.006 |
[Cui M, Zhang X D, Cai Q G, et al.2008. Relationship between black soil development and climate change and geomorphological evolution in Northeast China[J]. Geographical Research, 27(3): 527-535.]
doi: 10.3321/j.issn:1000-0585.2008.03.006 |
|
3 | 鄂立思. 2015. 乌裕尔河流域土壤侵蚀时空分布特征及影响因素研究[D]. 哈尔滨: 哈尔滨师范大学. [E L S. 2015. Study on spatial temporal patterns and contributory factors of soil erosion in Wuyur River basin[D]. Harbin, China: Harbin Normal University.] |
4 |
鄂立思, 孙丽, 李苗, 等. 2015. 基于GIS和RUSLE乌裕尔河流域土壤侵蚀定量评价[J]. 哈尔滨师范大学自然科学学报, 31(2): 154-158. [E L S, Sun L, Li M, et al. 2015. Quantitative assessment of soil erosion in Wuyuer River basin based on GIS and RUSLE[J]. Natural Sciences Journal of Harbin Normal University, 31(2): 154-158.]
doi: 10.3969/j.issn.1000-5617.2015.02.042 |
5 |
方海燕, 蔡强国, 李秋艳. 2009. 东北典型黑土区乌裕尔河中游泥沙输移月年时间尺度特征[J]. 泥沙研究, (2): 16-21.
doi: 10.3321/j.issn:0468-155X.2009.02.003 |
[Fang H Y, Cai Q G, Li Q Y.2009. Sediment transport characteristics at the monthly and yearly scales in midstream of Wuyuer River in the typical black soil region of Northeastern China[J]. Journal of Sediment Research, (2): 16-21.]
doi: 10.3321/j.issn:0468-155X.2009.02.003 |
|
6 | 高燕, 张延玲, 焦剑, 等. 2016. 松花江流域不同空间尺度典型流域泥沙输移比及其影响因素[J]. 中国水土保持科学, 14(1): 21-27. |
[Gao Y, Zhang Y L, Jiao J, et al.2016. Sediment delivery ratios of typical watersheds on different spatial scales in Songhua River basin and its affecting factors[J]. Science of Soil and Water Conservation, 14(1): 21-27.] | |
7 |
高玉芳, 陈耀登, 蒋义芳, 等. 2015. DEM数据源及分辨率对HEC-HMS水文模拟的影响[J]. 水科学进展, 26(5): 624-630.
doi: 10.14042/j.cnki.32.1309.2015.05.003 |
[Gao Y F, Chen Y D, Jiang Y F, et al.2015. Effects of DEM source and resolution on the HEC-HMS hydrological simulation[J]. Advances in Water Science, 26(5): 624-630.]
doi: 10.14042/j.cnki.32.1309.2015.05.003 |
|
8 |
胡刚, 宋慧, 刘宝元, 等. 2015. 黑土区基准坡长和LS算法对地形因子的影响[J]. 农业工程学报, 31(3): 166-173.
doi: 10.3969/j.issn.1002-6819.2015.03.023 |
[Hu G, Song H, Liu B Y, et al.2015. Effects of both slope length of standard plot and algorithms of LS on calculated values of topography factor (LS) in black soil areas in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 31(3): 166-173.]
doi: 10.3969/j.issn.1002-6819.2015.03.023 |
|
9 |
胡刚, 伍永秋, 刘宝元, 等. 2006. 东北漫川漫岗黑土区浅沟和切沟发生的地貌临界模型探讨[J]. 地理科学, 26(4): 449-454.
doi: 10.3969/j.issn.1000-0690.2006.04.011 |
[Hu G, Wu Y Q, Liu B Y, et al.2006. Geomorphic threshold model for ephemeral gully incision in rolling hills with black soil in Northeast China[J]. Scientia Geographica Sinica, 26(4): 449-454.]
doi: 10.3969/j.issn.1000-0690.2006.04.011 |
|
10 | 简金世. 2011. 松花江流域不同侵蚀类型区泥沙输移比的估算[D]. 杨凌: 西北农林科技大学. [Jian J S. 2011. Estimation of sediment delivery ratio in different soil erosion regions in the Songhua River Basin[D]. Yangling, China: Northwest A&F University.] |
11 | 雷廷武, 李法虎. 2012. 水土保持学[M]. 北京: 中国农业大学出版社. [Lei T W, Li F H. 2012. Soil and water conservation[M]. Beijing, China: China Agricultural University Press.] |
12 | 李百安. 2015. 基于USLE模型的吉林梨树县土壤侵蚀现状初步分析[D]. 长春: 东北师范大学. [Li B A. 2015. A preliminary analysis of the current situation of soil erosion in Lishu County of Jilin based on USLE model[D]. Changchun, China: Northeast Normal University.] |
13 | 李浩. 2012. 黑土区典型小流域水土流失演变与输移特征研究[D]. 北京: 中国科学院大学. [Li H. 2012. Evolvement of soil erosion and sediment transport in typical black soil small watershed[D]. Beijing, China: University of Chinese Academy of Sciences.] |
14 | 李雪莹, 杨俊, 温海明, 等. 2015. 基于RUSLE模型的土壤侵蚀量估算: 以辽宁省阜新市为例[J]. 水土保持通报, 35(1): 199-204. |
[Li X Y, Yang J, Wen H M, et al.2015. Estimation of soil erosion amount based on RUSLE model: A case study in Fuxin City of Liaoning Province[J]. Bulletin of Soil and Water Conservation, 35(1): 199-204.] | |
15 | 刘远利. 2010. WEPP模型(坡面版)在东北黑土区的适用性评价[D]. 杨凌: 西北农林科技大学. [Liu Y L. 2010. Assessment on WEPP Model (hillslope version) applicability to the black soil region in Northeast China[D]. Yangling, China: Northwest A&F University.] |
16 | 马丽娟, 秦大河. 2012. 1957-2009年中国台站观测的关键积雪参数时空变化特征[J]. 冰川冻土, 34(1): 1-11. |
[Ma L J, Qin D H.2012. Spatial-temporal characteristics of observed key parameters for snow cover in China during 1957-2009[J]. Journal of Glaciology and Geocryology, 34(1): 1-11.] | |
17 | 孟凡影, 付伟涛, 杨欢, 等. 2015. 基于GIS技术的古城小流域土壤侵蚀研究[J]. 水土保持研究, 22(5): 9-13. |
[Meng F Y, Fu W T, Yang H, et al.2015. GIS-based research of soil erosion in Gucheng small watershed[J]. Research of Soil and Water Conservation, 22(5): 9-13.] | |
18 |
盛美玲, 方海燕. 2014. WaTEM/SEDEM模型及其应用研究进展与展望[J]. 地理科学进展, 33(1): 85-91.
doi: 10.11820/dlkxjz.2014.01.010 |
[Sheng M L, Fang H Y.2014. Research progress in WaTEM/SEDEM model and its application prospect[J]. Progress in Geography, 33(1): 85-91.]
doi: 10.11820/dlkxjz.2014.01.010 |
|
19 | 盛美玲, 方海燕, 郭敏. 2015. 东北黑土区小流域侵蚀产沙WaTEM/SEDEM模型模拟[J]. 资源科学, 37(4): 815-822. |
[Sheng M L, Fang H Y, Guo M.2015. Modeling soil erosion and sediment yield using WaTEM/SEDEM model for the black soil region of Northeast China[J]. Resources Science, 37(4): 815-822.] | |
20 | 仕玉治. 2011. 气候变化及人类活动对流域水资源的影响及实例研究[D]. 大连: 大连理工大学. [Shi Y Z. 2011. The influence of climate change and human activities on basin water resources and cases study[D]. Dalian, China: Dalian University of Technology.] |
21 | 汤洁, 张爱丽, 侯克怡, 等. 2014. 辽河重污染支流招苏台河径流和泥沙模拟研究[J]. 水土保持研究, 21(2): 111-115. |
[Tang J, Zhang A L, Hou K Y, et al.2014. The simulation of runoff and sediment in heavy polluted tributary in Liaohe-Zhaosutai River[J]. Research of Soil and Water Conservation, 21(2): 111-115.] | |
22 | 唐克丽. 2004. 中国水土保持[M]. 北京: 科学出版社. [Tang K L. 2004. Zhongguo shuitu baochi[M]. Beijing, China: Science Press.] |
23 | 王文娟, 张树文, 方海燕. 2012. 东北典型黑土区坡沟侵蚀耦合关系[J]. 自然资源学报, 27(12): 2113-2122. |
[Wang W J, Zhang S W, Fang H Y.2012. Coupling mechanism of slope-gully erosion in typical black soil area of Northeast China[J]. Journal of Natural Resources, 27(12): 2113-2122.] | |
24 | 王志杰, 简金世, 焦菊英, 等. 2013. 基于RUSLE的松花江流域不同侵蚀类型区泥沙输移比估算[J]. 水土保持研究, 20(5): 50-56. |
[Wang Z J, Jian J S, Jiao J Y, et al.2013. Estimation of sediment delivery ratio in different soil erosion regions in the Songhua River basin based on RUSLE[J]. Research of Soil and Water Conservation, 20(5): 50-56.] | |
25 |
魏建兵, 肖笃宁, 李秀珍, 等. 2006. 东北黑土区小流域农业景观结构与土壤侵蚀的关系[J]. 生态学报, 26(8): 2608-2615.
doi: 10.3321/j.issn:1000-0933.2006.08.025 |
[Wei J B, Xiao D N, Li X Z, et al.2006. Relationship between landscape pattern and soil erosion of an agricultural watershed in the mollisols region of Northeastern China[J]. Acta Ecologica Sinica, 26(8): 2608-2615.]
doi: 10.3321/j.issn:1000-0933.2006.08.025 |
|
26 | 魏守才. 2015. 水土流失对黑土坡耕地土壤有机碳的影响[D]. 北京: 中国科学院大学. [Wei S C. 2015. Effect of soil erosion on soil organic carbon on sloping field of Black Soil area in Northeast China[D]. Beijing, China: University of Chinese Academy of Sciences.] |
27 | 吴发启, 张洪江. 2012. 土壤侵蚀学[M]. 北京: 科学出版社. [Wu F Q, Zhang H J. 2012. Turang qinshi xue[M]. Beijing, China: Science Press.] |
28 |
于书霞, 王宁, 朱颜明, 等. 2001. 基于地理信息系统的土壤侵蚀研究[J]. 水土保持通报, 21(3): 20-23.
doi: 10.3969/j.issn.1000-288X.2001.03.006 |
[Yu S X, Wang N, Zhu Y M, et al.2001. Applications of GIS in soil erosion research[J]. Bulletin of Soil and Water Conservation, 21(3): 20-23.]
doi: 10.3969/j.issn.1000-288X.2001.03.006 |
|
29 | 张爱静. 2013. 东北地区流域径流对气候变化与人类活动的响应特征研究[D]. 大连: 大连理工大学. [Zhang A J. 2013. Research on the streamflow responses to climate variability and human activities in Northeast China[D]. Dalian, China: Dalian University of Technology.] |
30 |
张素梅, 王宗明, 闫百兴, 等. 2008. 辉发河流域景观格局与土壤侵蚀的关系研究[J]. 水土保持学报, 22(3): 29-35.
doi: 10.3321/j.issn:1009-2242.2008.03.007 |
[Zhang S M, Wang Z M, Yan B X, et al.2008. Relationship between landscape pattern and soil erosion of Huifa River watershed[J]. Journal of Soil and Water Conservation, 22(3): 29-35.]
doi: 10.3321/j.issn:1009-2242.2008.03.007 |
|
31 |
张晓平, 梁爱珍, 申艳, 等. 2006. 东北黑土水土流失特点[J]. 地理科学, 26(6): 687-692.
doi: 10.3969/j.issn.1000-0690.2006.06.008 |
[Zhang X P, Liang A Z, Shen Y, et al.2006. Erosion characteristics of black soils in Northeast China[J]. Scientia Geographica Sinica, 26(6): 687-692.]
doi: 10.3969/j.issn.1000-0690.2006.06.008 |
|
32 |
Buendia C, Bussi G, Tuset J, et al.2016. Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment[J]. Science of the Total Environment, 540: 144-157.
doi: 10.1016/j.scitotenv.2015.07.005 pmid: 26188652 |
33 |
Bussi G, Francés F, Horel E, et al.2014. Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment[J]. Journal of Soils and Sediments, 14(12): 1921-1937.
doi: 10.1007/s11368-014-0956-7 |
34 |
Bussi G, Francés F, Montoya J J, et al.2014. Distributed sediment yield modelling: Importance of initial sediment conditions[J]. Environmental Modelling & Software, 58: 58-70.
doi: 10.1016/j.envsoft.2014.04.010 |
35 |
Bussi G, Rodríguez-Lloveras X, Francés F, et al.2013. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment[J]. Hydrology and Earth System Sciences, 17(8): 3339-3354.
doi: 10.5194/hess-17-3339-2013 |
36 |
Coccia G, Todini E.2011. Recent developments in predictive uncertainty assessment based on the model conditional processor approach[J]. Hydrology and Earth System Sciences, 15(10): 3253-3274.
doi: 10.5194/hess-15-3253-2011 |
37 | Engelund F, Hansen E.1967. A monograph on sediment transport in alluvial streams[R]. Hydraulic Engineering Reports. Copenhagen, Denmark: TEKNISKFORLAG: 699-703. |
38 |
Fang H Y.2015. Temporal variations of sediment source from a reservoir catchment in the black soil region, Northeast China[J]. Soil and Tillage Research, 153: 59-65.
doi: 10.1016/j.still.2015.04.009 |
39 |
Fang H Y.2016. Impact of land use change and dam construction on soil erosion and sediment yield in the black soil region, Northeastern China[J]. Land Degradation & Development, doi: 10.1002/ldr.2677.
doi: 10.1002/ldr.2677 |
40 |
Francés F, Vélez J I, Vélez J J.2007. Split-parameter structure for the automatic calibration of distributed hydrological models[J]. Journal of Hydrology, 332(1-2): 226-240.
doi: 10.1016/j.jhydrol.2006.06.032 |
41 | Kilinc M, Richardson E V.1973. Mechanics of soil erosion from overland flow generated by simulated rainfall[R]. Hydrology Paper No. 63. Fort Collins, CO: Colorado State University. |
42 |
Kim K B, Han D W.2016. Exploration of sub-annual calibration schemes of hydrological models[J]. Hydrology Research, 47(6): doi: 10.2166/nh.2016.296.
doi: 10.2166/nh.2016.296 |
43 | Le Lay M, Galle S.2005. How changing rainfall regimes may affect the water balance: A modelling approach in West Africa[C]//Franks S, Wagener T, Bogh E, et al. Regional hydrological impacts of climatic change: Hydroclimatic variability: Proceedings. Wallingford: AISH: 203-210. |
44 | Leopold L B, Maddock Jr T.1953. The hydraulic geometry of stream channels and some physiographic implications[R]. Geological Survey Professional Paper 252. Washington, DC: United States Government Printing Office. |
45 |
Moriasi D N, Arnold J G, Van Liew M W, et al.2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 50(3): 885-900.
doi: 10.13031/2013.23153 |
46 |
Rodriguez-Lloveras X, Bussi G, Francés F, et al.2015. Patterns of runoff and sediment production in response to land-use changes in an ungauged Mediterranean catchment[J]. Journal of Hydrology, 531: 1054-1066.
doi: 10.1016/j.jhydrol.2015.11.014 |
47 |
Rodriguez-Lloveras X, Buytaert W, Benito G.2016. Land use can offset climate change induced increases in erosion in Mediterranean watersheds[J]. Catena, 143: 244-255.
doi: 10.1016/j.catena.2016.04.012 |
48 |
Ruiz-Villanueva V, Stoffel M, Bussi G, et al.2015. Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: Model results and implications[J]. Regional Environmental Change, 15(3): 505-515.
doi: 10.1007/s10113-014-0707-8 |
49 | Sánchez R R.2002. GIS-based upland erosion modeling, geovisualization and grid size effects on erosion simulations with CASC2D-SED[D]. Fort Collins, US: Colorado State University. |
50 |
Salazar S, Francés F, Komma J, et al.2012. A comparative analysis of the effectiveness of flood management measures based on the concept of "retaining water in the landscape" in different European hydro-climatic regions[J]. Natural Hazards and Earth System Science, 12(11): 3287-3306.
doi: 10.5194/nhess-12-3287-2012 |
51 |
Seibert J, Vis M J P.2012. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package[J]. Hydrology and Earth System Sciences, 16(9): 3315-3325.
doi: 10.5194/hessd-9-5905-2012 |
52 | Sharply A N, Williams J R.1990. EPIC-erosion/productivity impact calculator: Model documentation[M]. Beltsville, MD: US Department of Agriculture Technical Bulletin: 1768. |
53 |
Shrestha R, Tachikawa Y, Takara K.2006. Input data resolution analysis for distributed hydrological modeling[J]. Journal of Hydrology, 319(1-4): 36-50.
doi: 10.1016/j.jhydrol.2005.04.025 |
54 |
Wang W J, Qiu L, Zu Y G, et al.2011. Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Global Change Biology, 17(8): 2657-2676.
doi: 10.1111/j.1365-2486.2011.02447.x |
55 |
Wood E F, Sivapalan M, Beven K, et al.1988. Effects of spatial variability and scale with implications to hydrologic modeling[J]. Journal of Hydrology, 102(1-4): 29-47.
doi: 10.1016/0022-1694(88)90090-X |
56 |
Woods R, Sivapalan M, Duncan M.1995. Investigating the representative elementary area concept: An approach based on field data[J]. Hydrological Processes, 9(3-4): 291-312.
doi: 10.1002/hyp.3360090306 |
57 |
Xie Z B, Zhu J G, Liu G, et al.2007. Soil organic carbon stocks in China and changes from 1980s to 2000s[J]. Global Change Biology, 13(9): 1989-2007.
doi: 10.1111/j.1365-2486.2007.01409.x |
No related articles found! |
|