PROGRESS IN GEOGRAPHY ›› 2016, Vol. 35 ›› Issue (12): 1538-1548.doi: 10.18306/dlkxjz.2016.12.010
• Orginal Article • Previous Articles
Jingchao JIANG1(), Junzhi LIU2,3,*(
), Chengzhi QIN3,4, Yamin MIAO2, A-Xing ZHU2,3
Online:
2016-12-20
Published:
2016-12-20
Contact:
Junzhi LIU
E-mail:jiangjc@hdu.edu.cn;liujunzhi@njnu.edu.cn
Supported by:
Jingchao JIANG, Junzhi LIU, Chengzhi QIN, Yamin MIAO, A-Xing ZHU. Near-surface air temperature lapse rates and seasonal and type differences in China[J].PROGRESS IN GEOGRAPHY, 2016, 35(12): 1538-1548.
Tab.2
RMSEs at the national scale by two different methods/℃"
季节/年 | 平均气温 | 平均最低气温 | 平均最高气温 | |||||
---|---|---|---|---|---|---|---|---|
RMSE-IDW | RMSE-DEM | RMSE-IDW | RMSE-DEM | RMSE-IDW | RMSE-DEM | |||
春 | 3.14 | 1.59 | 3.19 | 1.66 | 3.23 | 1.89 | ||
夏 | 2.92 | 1.10 | 2.93 | 1.16 | 3.04 | 1.43 | ||
秋 | 2.93 | 1.49 | 3.14 | 1.77 | 2.86 | 1.57 | ||
冬 | 3.37 | 2.50 | 3.80 | 2.70 | 3.11 | 2.59 | ||
年 | 2.99 | 1.55 | 3.19 | 1.74 | 2.93 | 1.72 |
Tab.3
Lapse rates of mean air temperature at the regional scale/(℃/100 m)"
大区 | 区域ID | 春 | 夏 | 秋 | 冬 | 年 |
---|---|---|---|---|---|---|
东部季风区 | 1 | ○0.65* | ×0.83* | ○0.59× | ×-0.15× | ×0.48× |
2 | □0.56*** | □0.58*** | □0.59*** | □0.51*** | □0.56*** | |
3 | □0.74*** | □0.91*** | □0.73*** | □0.15× | □0.63** | |
4 | □0.61*** | □0.62*** | □0.58*** | □0.51*** | □0.58*** | |
5 | □0.62* | □0.58** | □1.27*** | □1.66*** | □1.03*** | |
6 | □0.54*** | □0.57*** | □0.49*** | □0.49*** | □0.52*** | |
7 | □0.56*** | □0.62*** | □0.48*** | □0.36*** | □0.51*** | |
8 | □0.45*** | □0.58*** | □0.50*** | □0.40*** | □0.48*** | |
9 | □0.50*** | □0.52*** | □0.42*** | □0.42*** | □0.46*** | |
10 | □0.46*** | □0.59*** | □0.57*** | □0.40*** | □0.50*** | |
11 | □0.50*** | □0.62*** | □0.53*** | □0.40*** | □0.51*** | |
12 | □0.55*** | □0.56*** | □0.53*** | □0.57*** | □0.55*** | |
13 | □0.48*** | □0.55*** | □0.53*** | □0.50*** | □0.52*** | |
14 | □0.56*** | □0.51*** | □0.49*** | □0.47*** | □0.51*** | |
15 | □0.23*** | □0.48*** | □0.42*** | □0.17* | □0.32*** | |
17 | □0.11× | ○0.36** | △0.35* | □0.07× | □0.22× | |
18 | △0.39** | □0.50*** | □0.50*** | △0.36* | □0.44** | |
西北干旱区 | 20 | ○0.68× | ×1.02× | ○0.67× | △0.25× | ○0.66× |
21 | □0.81*** | □0.77*** | □0.72*** | □0.89*** | □0.80*** | |
22 | □0.63*** | □0.52*** | □0.46** | □0.43* | □0.51*** | |
23 | △0.77** | △0.79** | ○0.60** | ○0.38* | ○0.64** | |
24 | □0.53*** | □0.63*** | □0.41*** | ×-0.20× | △0.34** | |
26 | □0.71*** | □0.72*** | □0.56*** | ○0.25* | □0.56*** | |
27 | □0.68*** | □0.74*** | □0.45*** | □0.32* | □0.55*** | |
青藏高寒区 | 29 | □0.63*** | □0.53*** | □0.58*** | □0.66*** | □0.60*** |
30 | ○0.85** | ○0.69* | ○0.76** | ○0.81** | ○0.78** | |
31 | □0.64*** | □0.66*** | □0.56*** | □0.47*** | □0.58*** | |
32 | □0.55*** | □0.53*** | □0.40*** | △0.36** | □0.46*** |
Tab.4
Lapse rates of mean minimum air temperature at the regional scale/(℃/100 m)"
大区 | 区域ID | 春 | 夏 | 秋 | 冬 | 年 |
---|---|---|---|---|---|---|
东部季风区 | 1 | ×0.77× | ×0.92× | ×0.66× | ×-0.17× | ×0.55× |
2 | □0.70*** | □0.78*** | □0.73*** | □0.71** | □0.73*** | |
3 | □0.69* | □0.97*** | □0.85* | □0.12× | □0.66× | |
4 | □0.51*** | □0.54*** | □0.47** | □0.45** | □0.49*** | |
5 | □1.26*** | □1.10*** | □1.96*** | □2.33*** | □1.66*** | |
6 | □0.54*** | □0.59*** | □0.52*** | □0.55*** | □0.55*** | |
7 | □0.44*** | □0.52*** | □0.40*** | □0.30*** | □0.41*** | |
8 | □0.44*** | □0.52*** | □0.47*** | □0.43*** | □0.47*** | |
9 | □0.53*** | □0.57*** | □0.50*** | □0.52*** | □0.53*** | |
10 | □0.43*** | □0.51*** | □0.51*** | □0.41*** | □0.46*** | |
11 | □0.47*** | □0.55*** | □0.49*** | □0.41*** | □0.48*** | |
12 | □0.56*** | □0.54*** | □0.55*** | □0.60*** | □0.56*** | |
13 | □0.49*** | □0.50*** | □0.53*** | □0.52*** | □0.51*** | |
14 | □0.54*** | □0.50*** | □0.53*** | □0.51*** | □0.52*** | |
15 | □0.36*** | □0.47*** | □0.41*** | □0.29** | □0.38*** | |
17 | □0.30× | ×0.49* | □0.44* | □0.26× | □0.37× | |
18 | ○0.44** | □0.49*** | □0.48*** | ○0.37* | △0.44** | |
西北干旱区 | 20 | ×0.68× | ×1.00× | ×0.80× | △0.32× | ×0.70× |
21 | □0.76*** | □0.82*** | □0.71*** | □0.86** | □0.79*** | |
22 | △0.50* | ○0.47* | ○0.40× | ○0.41× | ○0.44* | |
23 | ○0.72** | ○0.70* | ○0.56* | ○0.48* | ○0.62* | |
24 | □0.42** | △0.49** | ○0.33* | ×-0.18× | ○0.27* | |
26 | □0.61*** | □0.60*** | □0.46*** | ○0.26× | □0.48*** | |
27 | □0.66*** | □0.70*** | ○0.46* | ○0.39× | △0.55** | |
青藏高寒区 | 29 | □0.66*** | □0.53*** | □0.60*** | □0.78*** | □0.64*** |
30 | △0.92*** | △0.70*** | △0.82** | ×0.96* | △0.85** | |
31 | □0.63*** | □0.59*** | □0.54*** | □0.54*** | □0.57*** | |
32 | □0.49** | △0.51** | △0.37** | △0.40* | △0.44** |
Tab.5
Lapse rates of mean maximum air temperature at the regional scale/(℃/100 m)"
大区 | 区域ID | 春 | 夏 | 秋 | 冬 | 年 |
---|---|---|---|---|---|---|
东部季风区 | 1 | △0.62** | ○0.68** | □0.55*** | ×-0.05× | △0.45* |
2 | □0.45*** | □0.40*** | □0.45*** | □0.29** | □0.40*** | |
3 | □0.68*** | □0.66*** | □0.44*** | □0.07× | □0.46** | |
4 | □0.71*** | □0.72*** | □0.68*** | □0.57*** | □0.67*** | |
5 | □0.34× | □0.17× | □0.69*** | □1.03*** | □0.56** | |
6 | □0.52*** | □0.54*** | □0.45*** | □0.42*** | □0.48*** | |
7 | □0.65*** | □0.70*** | □0.58*** | □0.42*** | □0.59*** | |
8 | □0.46*** | □0.61*** | □0.54*** | □0.37*** | □0.50*** | |
9 | □0.46*** | □0.45*** | □0.31*** | □0.24*** | □0.36*** | |
10 | □0.53*** | □0.70*** | □0.65*** | □0.44*** | □0.58*** | |
11 | □0.55*** | □0.70*** | □0.59*** | □0.41*** | □0.56*** | |
12 | □0.55*** | □0.61*** | □0.51*** | □0.50*** | □0.54*** | |
13 | □0.46*** | □0.62*** | □0.55*** | □0.45*** | □0.52*** | |
14 | □0.58*** | □0.52*** | □0.46*** | □0.44*** | □0.50*** | |
15 | △0.02× | □0.47*** | □0.41*** | □-0.05× | △0.22* | |
17 | △-0.23× | ×0.02× | ×0.10× | □-0.27× | △-0.10× | |
18 | △0.35* | □0.49*** | □0.55** | △0.36× | △0.44* | |
西北干旱区 | 20 | △0.62* | ×0.92* | △0.54* | △0.17× | △0.57* |
21 | □0.87*** | □0.74*** | □0.76*** | □0.96*** | □0.83*** | |
22 | □0.77*** | □0.64*** | □0.58*** | □0.41*** | □0.60*** | |
23 | □0.79*** | □0.85*** | □0.63*** | □0.17** | □0.61*** | |
24 | □0.61*** | □0.74*** | □0.47*** | ×-0.28× | △0.39** | |
26 | □0.79*** | □0.81*** | □0.67*** | ○0.26* | □0.63*** | |
27 | □0.70*** | □0.82*** | □0.53*** | □0.19** | □0.56*** | |
青藏高寒区 | 29 | □0.68*** | □0.61*** | □0.60*** | □0.62*** | □0.63*** |
30 | ×0.83* | ×0.74* | ○0.78* | ○0.76** | ○0.78* | |
31 | □0.62*** | □0.69*** | □0.54*** | □0.36*** | □0.55*** | |
32 | □0.63*** | □0.57*** | □0.51*** | □0.33*** | □0.51*** |
[1] | 方精云. 1992. 我国气温直减率分布规律的研究[J]. 科学通报, 37(9): 817-820. |
[Fang J Y.1992. Studies on geographic distribution of the altitudinal lapse rate of temperature in China[J]. Chinese Science Bulletin, 37(23): 1979-1983.] | |
[2] |
李军, 游松财, 黄敬峰. 2006. 中国1961-2000年月平均气温空间插值方法与空间分布[J]. 生态环境, 15(1): 109-114.
doi: 10.3969/j.issn.1674-5906.2006.01.024 |
[Li J, You S C, Huang J F.2006. Spatial interpolation method and spatial distribution characteristics of monthly mean temperature in China during 1961-2000[J]. Ecology and Environment, 15(1): 109-114.]
doi: 10.3969/j.issn.1674-5906.2006.01.024 |
|
[3] |
刘伟刚, 张东启, 柳景峰, 等. 2013. 喜马拉雅山中段地区气温直减率变化特征[J]. 干旱气象, 31(2): 240-245.
doi: 10.11755/j.issn.1006-7639(2013)-02-0240 |
[Liu W G, Zhang D Q, Liu J F, et al.2013. A study on temperature lapse rate on the northern and southern slopes of the central Himalayas[J]. Journal of Arid Meteorology, 31(2): 240-245.]
doi: 10.11755/j.issn.1006-7639(2013)-02-0240 |
|
[4] |
潘耀忠, 龚道溢, 邓磊, 等. 2004. 基于DEM的中国陆地多年平均温度插值方法[J]. 地理学报, 59(3): 366-374.
doi: 10.3321/j.issn:0375-5444.2004.03.006 |
[Pan Y Z, Gong D Y, Deng L, et al.2004. Smart distance searching-based and DEM-informed interpolation of surface air temperature in China[J]. Acta Geographica Sinica, 59(3): 366-374.]
doi: 10.3321/j.issn:0375-5444.2004.03.006 |
|
[5] | 山地气候文集编委会. 1984. 山地气候文集[M]. 北京: 气象出版社: 69-76. |
[Editorial Committee of Collected Works on Mountain Climate. 1984. Shandi qihou wenji[M]. Beijing, China: China Meteorological Press: 69-76.] | |
[6] | 宋文娟, 熊黑钢, 穆桂金. 2009. 新疆博格达山北麓气候变化分析[J]. 干旱区研究, 26(5): 628-633. |
[Song W J, Xiong H G, Mu G J.2009. Analysis on climatic change in northern piedmont of the Bogda Mountain, Xinjiang[J]. Arid Zone Research, 26(5): 628-633.] | |
[7] |
王艳霞, 丁琨, 黄晓园, 等. 2014. 利用遥感瞬时温度场研究云南山地气温直减率[J]. 遥感学报, 18(4): 912-922.
doi: 10.11834/jrs.20142362 |
[Wang Y X, Ding K, Huang X Y, et al.2014. Temperature lapse rates in the mountain regions of Yunnan Province based on remotely sensed instantaneous land surface temperature[J]. Journal of Remote Sensing, 18(4): 912-922.]
doi: 10.11834/jrs.20142362 |
|
[8] |
翁笃鸣, 孙治安. 1984. 我国山地气温直减率的初步研究[J]. 地理研究, 3(2): 24-34.
doi: 10.11821/yj1984020003 |
[Weng D M, Sun Z A.1984. A preliminary study of the lapse rate of surface air temperature over mountainous regions of China[J]. Geographical Research, 3(2): 24-34.]
doi: 10.11821/yj1984020003 |
|
[9] |
杨美华. 1981. 长白山的气候特征及北坡垂直气候带[J]. 气象学报, 39(3): 311-320.
doi: 10.11676/qxxb1981.034 |
[Yang M H.1981. The climatic features of Changbaishan and its vertical climatic zone on the northern slop[J]. Acta Meteorologica Sinica, 39(3): 311-320.]
doi: 10.11676/qxxb1981.034 |
|
[10] |
张洪亮, 倪绍祥, 邓自旺, 等. 2002. 基于DEM的山区气温空间模拟方法[J]. 山地学报, 20(3): 360-364.
doi: 10.3969/j.issn.1008-2786.2002.03.018 |
[Zhang H L, Ni S X, Deng Z W, et al.2002. A method of spatial simulating of temperature based Digital Elevation Model (DEM) in mountain area[J]. Journal of Mountain Science, 20(3): 360-364.]
doi: 10.3969/j.issn.1008-2786.2002.03.018 |
|
[11] | 张家诚, 林之光. 1985. 中国气候[M]. 上海: 上海科学技术出版社: 79-97. |
[Zhang J C, Lin Z G.1985. Zhongguo qihou[M]. Shanghai, China: Shanghai Science and Technology Press: 79-97.] | |
[12] |
张勇, 刘时银, 韩海东, 等. 2004. 天山南坡科其卡尔巴契冰川消融期气候特征分析[J]. 冰川冻土, 26(5): 545-550.
doi: 10.3969/j.issn.1000-0240.2004.05.006 |
[Zhang Y, Liu S Y, Han H D, et al.2004. Characteristics of climate on the Keqicar Glacier on the south slopes of the Tianshan Mountains during Ablation period[J]. Journal of Glaciology and Geocryology, 26(5): 545-550.]
doi: 10.3969/j.issn.1000-0240.2004.05.006 |
|
[13] |
赵芳, 张百平, 庞宇, 等. 2012. 山体效应对北半球林线分布的影响分析[J]. 地理学报, 67(11): 1556-1564.
doi: 10.11821/xb201211012 |
[Zhao F, Zhang B P, Pang Y, et al.2012. Mass elevation effect and its contribution to the altitude of timberline in the Northern Hemisphere[J]. Acta Geographica Sinica, 67(11): 1556-1564.]
doi: 10.11821/xb201211012 |
|
[14] |
郑成洋, 方精云. 2004. 福建黄岗山东南坡气温的垂直变化[J]. 气象学报, 62(2): 251-255.
doi: 10.3321/j.issn:0577-6619.2004.02.012 |
[Zheng C Y, Fang J Y.2004. Changes in air temperature varibles along altitudinal gradient in Mt. Huanggang, China[J]. Acta Meteorologica Sinica, 62(2): 251-255.]
doi: 10.3321/j.issn:0577-6619.2004.02.012 |
|
[15] | 中国科学院《中国自然地理》编辑委员会. 1985. 中国自然地理总论[M]. 北京: 科学出版社: 187-196. |
[Editorial Board of Physical Geography of China, CAS. 1985. Zhongguo ziran dili zonglun[M]. Beijing, China: Science Press: 187-196.] | |
[16] | 中山大学, 兰州大学, 南京大学, 等. 1978. 自然地理学[M]. 北京: 人民教育出版社: 36-39. |
[Sun Yat-Sen University, Lanzhou University, Nanjing University, et al. 1978. Ziran dili xue[M]. Beijing, China: People's Education Press: 36-39.] | |
[17] | Fang J Y, Yoda K.1988. Climate and vegetation in China (I). Changes in the altitudinal lapse rate of temperature and distribution of sea level temperature[J]. Ecological Research, 3(1): 37-51. |
[18] |
Hargreaves G H, Samani Z A.1985. Reference crop evapotranspiration from temperature[J]. Applied Engineering in Agriculture, 1(2): 96-99.
doi: 10.13031/2013.26773 |
[19] |
Harlow R C, Burke E J, Scott R L, et al.2004. Research note: Derivation of temperature lapse rates in semi-arid south-eastern Arizona[J]. Hydrology and Earth System Sciences, 8(6): 1179-1185.
doi: 10.5194/hess-8-1179-2004 |
[20] |
Li X P, Wang L, Chen D L, et al.2013. Near-surface air temperature lapse rates in the mainland China during 1962-2011[J]. Journal of Geophysical Research: Atmospheres, 118(14): 7505-7515.
doi: 10.1002/jgrd.50553 |
[21] |
Peng S S, Piao S L, Ciais P, et al.2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation[J]. Nature, 501: 88-92.
doi: 10.1038/nature12434 pmid: 24005415 |
[22] | Rolland C.2003. Spatial and seasonal variations of air temperature lapse rates in Alpine regions[J]. Journal of Climate, 16(7): 1032-1046. |
[1] | CHEN Zhuo, LIANG Yi, JIN Fengjun. Simulation of city network accessibility and its influence on regional development pattern in China based on integrated land transport system [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 183-193. |
[2] | JIANG Wanbei, LIU Weidong, LIU Zhigao, HAN Mengyao. Inequality and driving forces of energy-related CO2 emissions intensity in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1425-1435. |
[3] | HUANG Yingze, QIU Bingwen, HE Yuhua, ZHANG Ke, ZOU Fengli. Optimal elevation interval of rice expansion in Northeast China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1557-1564. |
[4] | HU Guojian, LU Yuqi. Progress, thoughts, and prospect of urban network research based on enterprise perspective [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1587-1596. |
[5] | FU Zhanhui, MEI Lin, ZHENG Rumin, WANG Tongtong. Spatial differentiation mechanism of urban female employment rate in Northeast China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1308-1318. |
[6] | ZHU Shengjun, HUANG Yongyuan, HU Xiaohui. Research framework and prospect of industrial value chain upgrading and spatial upgrading based on a multiple scale perspective [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1367-1384. |
[7] | DU Xinru, LU Zi, LI Renjie, DONG Yaqing, GAO Wei. Estimation of time delay cost of hub airports in China, air routes effect and comparison with the United States [J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1160-1171. |
[8] | ZHOU Guohua, ZHANG Rujiao, HE Yanhua, DAI Liuyan, ZHANG Li. Optimization of rural settlements and the governance of rural relative poverty [J]. PROGRESS IN GEOGRAPHY, 2020, 39(6): 902-912. |
[9] | TAN Xuelan, JIANG Lingxiao, WANG Zhenkai, AN Yue, CHEN Min, REN Hui. Rural poverty in China from the perspective of geography: Origin, progress, and prospect [J]. PROGRESS IN GEOGRAPHY, 2020, 39(6): 913-923. |
[10] | LIU Xiaopeng, CHENG Jing, ZHAO Xiaoyong, MIAO Hong, WEI Jingyi, ZENG Duan, MA Cunxia. Sustainable poverty reduction of China in a view of development geography [J]. PROGRESS IN GEOGRAPHY, 2020, 39(6): 892-901. |
[11] | GUO Jianke, HOU Yajie, HE Yao. Characteristics of change of the China-Europe port shipping network under the Belt and Road Initiative [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 716-726. |
[12] | SUN Na, ZHANG Meiqing. Network structure and evolution characteristics of cities in China based on high-speed railway transport flow [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 727-737. |
[13] | DU Delin, WANG Jiaoe, WANG Yi. Market structure and competition of the three major airlines in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 367-376. |
[14] | DUAN Qianwen, TAN Minghong. Temporal and spatial changes of urban forests in major cities in China and abroad [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 410-419. |
[15] | ZHOU Meijun, LI Fei, SHAO Jiaqi, YANG Haijuan. Change characteristics of maize production potential under the background of climate change in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 443-453. |
|