PROGRESS IN GEOGRAPHY ›› 2016, Vol. 35 ›› Issue (9): 1075-1086.doi: 10.18306/dlkxjz.2016.09.003
• Reviews • Previous Articles Next Articles
Haibo HU
Received:
2016-02-01
Revised:
2016-05-01
Online:
2016-09-20
Published:
2016-09-20
Supported by:
Haibo HU. Research progress of surging urban flood risks[J].PROGRESS IN GEOGRAPHY, 2016, 35(9): 1075-1086.
Tab.1
Characteristics of regular and irregular observation data and their suitability for urban flood hazards research"
资料类型 | 基本特征 | 不确定性特征及满足研究需求情况 | 文献来源 |
---|---|---|---|
气候站资料 | 空间分辨率受站点分布密度的影响,总体上较粗,需插值到格点上。 | 插值会产生较大偏差,不确定性较大。单独使用很难满足研究需求,从日降雨量等资料中很难提取降水持续时间等信息。 | Prudhome et al, 1999 |
地基雷达定量降水估计(QPE) | 雷达数据的网格大小可达1 km×1 km,分辨率较高。 | 探测误差及雨量反演时(不正确ZR关系)可产生数据不确定性;可单独使用,用自动站雨量资料订正后效果更好,可减少数据不确定性。能提取雨量、雨强及降水持续时间等信息。 | Sun et al, 2000;Sharif et al, 2006 |
自动站雨量计资料 | 自动站点分布较密,可反映降水在空间上的细微差别;数据的时空分辨率都较好;使用时需要插值,局部会产生一定的偏差,部分站的系统误差大。 | 同样在空间插值上会产生不确定性。在分布较密地区可单独使用,主要用于订正雷达定量降水估计(QPE);能提取时空信息;一些站点的数据质量不太理想,出现的系统误差不容易被发觉及剔除。 | Yu et al, 2010 |
闪电定位资料 | 大致体现雷暴的激烈程度,可以网格化后使用。 | 因探测仪及组网性能,在空间定位及探测效率上产生较大的不确定性。其推导出的闪电密度分布可用于辅助分析城市化对暴雨过程的影响。 | Stallins et al, 2008; Hu et al, 2014 |
TRMM卫星遥感资料 | TRMM卫星的雷达反演降水(Rain Rate)资料的格点大小为0.25?×0.25?,分辨率很低,但能完整观测较大尺度的雷暴天气过程。 | 会忽略2.3%的近地面降水,但与地基雷达探测结果基本一致。分辨率不高,很难单独用于城市暴雨危险性研究。 | Shepherd et al, 2002 |
Tab.2
General rainstorm hazard assessment models"
方法 | 简介 | 特点 | 文献来源 |
---|---|---|---|
统一雨量量纲法 | 首先计算降水持续时间D(单位为h)的雨量值(R)和日降雨量( 式中:P为降水量; | 方法基本上定量化,为下一步的风险评估方程提供输入参数。该方法需叠加脆弱性、敏感性及风险暴露因子等来综合评估暴雨灾害风险;综合了雨量及降雨持续时间信息。 | 扈海波等, 2013;Hu, 2015 |
分位数法 | 建立每个格点的雨量序列,计算格点的90%或99%的分位数值,以此判断所在格点的暴雨洪涝危险性大小,同时还可建立时间序列做Mann-Kendall (M-K)分析,检验格点的雨量增强趋势。 | 比较常用的极端天气及气候分析方法,能较好表现暴雨危险性的时空变化特征,但未较好体现与灾害性后果之间的关联;未作概率密度分析。 | Krishnamurth et al, 2009 |
极限阈值法(POT) | 用皮尔逊-通用普拉图(Poisson-generalized Pareto)概率密度函数计算超越概率,确定暴雨危险性的阈值,用最大似然法作参数估计,可借助Matlab等软件完成。Beguería等(2005)还利用“地形”等为影响因子的回归方程来估算暴雨危险指数。 | 较常用的极端气象要素值分析方法,用超越概率(重现期)确定暴雨危险性阈值。 | Beguería et al, 2005 |
历史灾情法 | 基于危险性越大,灾情期望损失越大的原则,统计历史灾害损失的情况,确定危险性指数。Meyer等(2009)运用这一方法得出历史灾情损失曲线与极端暴雨出现概率呈自然指数形式的非线性递减的规律。 | 可直接由灾害期望损失来反映灾害风险,并可判定对应的极端暴雨雨量的阈值,对历史灾情资料的数据质量有很高的要求。 | Meyer et al, 2009 |
洪涝指数模型(Ind-ex Flood Model) | 采用通用极值(Generalized Extreme Value, GEV)的概率分布型函数,用累计函数(CDF)计算超越概率。其中洪涝指标可采用GEV的位置参数 | 确定连续性区域的危险性指数,不用针对单个格点进行统计;采用的GEV分布型较合适极端暴雨的雨量分布。 | Buonomo et al, 2007; Goubanova et al, 2007; Hanel et al, 2009 |
Copulas模型方法 | Copulas模型非常适合暴雨危险性特征分析,其关键是建立雨强和降雨持续时间的概率关联来推算暴雨危险性指数。Copulas运用GEV分布型来建立雨强和持续时间的概率分布函数,然后建立关联,而二者之间的关联主要有:Frank's族方法( | 该方法可基于多维变量来计算暴雨危险性,有比较成熟的理论和方法体系;通常采用雨量和降雨持续时间的统计关联来建立二维信息的暴雨概率密度方程;方法比较客观并可定量化。 | Nelsen, 1999; Genest et al, 2007; Bonazzi et al, 2012 |
Tab.3
Existing hydrology models and their ability to meet the needs of urban flood risk assessment"
模型 | 技术特征 | 满足研究需求情况 | 文献来源 |
---|---|---|---|
SWMM | 美国环境保护署(EPA)开发的城市地表水文模型。基于汇水区(Watershed)计算,需事先给出汇水区域及汇流路径,然后计算汇流量(Runoff)及水深 | 精度高,但工作量大,尤其是汇水区域的划分。如模拟的区域范围小,仅涉及几个小流域面(Catchment),还能基本完成。但要完成一个城市区域范围内所有汇水斑块的划分较为困难。运用矢量格式的排水管线或其他数据,如汇流路径由计算机辅助生成。对数据的要求较高。 | Hsu et al, 2000; Rossman, 2010 |
Aquacycle | 同SWMM | 同SWMM | Yu et al, 2010 |
天津沥涝模型 | 同SWMM | 同SWMM | 解以扬等, 2005 |
GSSHA Model | 美国工程兵团(Army Corps)开发使用的分布式物理网格化地表水文分析模型(Gridded Surface/Subsurface Hydrologic Analysis Model, GSSHA),该模型考虑土地利用类型及水文参数的空间分布,包括排水能力等。模型在网格基础上用de St-Venant方程计算二维地表积水及一维管道排水。网格精度可达30 m分辨率或更高。 | 能使用ANC(Auto-NowCasting,短临预报)的QPE(Quantitative Precipitation Estimation,定量降水估计)和(Quantitative Precipitation Forecast,定量降水预报)作强迫。能够较好地模拟城市水文过程。分析城市不透水地表组成、城市管网排水能力等因素对汇流点的流量影响。需要概化城市排水管网资料,可以叠加比较详细的城市排水地物目标,比如排水井/口、涵洞等的分布数据。 | Ogden et al, 2000; Sharif et al, 2006 |
其他(SWAT、TOPMODEL等) | 这类非分布式水文模型(半分布式或集中式)能较好地模拟水流过程和部分水文反应过程( | SWAT没有子流域范围内水文反应的水流量,因此不能决定不同地表表面(Variable Source Areas, VSAs)上的径流量( | Easton et al, 2007; Beven, 1997V |
1 |
扈海波, 轩春怡, 诸立尚. 2013. 北京地区城市暴雨积涝灾害风险预评估[J]. 应用气象学报, 24(1): 99-108.
doi: 10.3969/j.issn.1001-7313.2013.01.010 |
[Hu H B, Xuan C Y, Zhu L S.2013. The pre-event risk assessment of Beijing urban flood[J]. Journal of Applied Meteorological Science, 24(1): 99-108.]
doi: 10.3969/j.issn.1001-7313.2013.01.010 |
|
2 |
扈海波, 张艳莉. 2014. 暴雨灾害人员损失风险快速预评估模型[J]. 灾害学, 29(1): 30-36.
doi: 10.3969/j.issn.1000-811X.2014.01.006 |
[Hu H B, Zhang Y L.2014. Quick assessing model on casualty loss in rainstorms[J]. Journal of Catastrophology, 29(1): 30-36.]
doi: 10.3969/j.issn.1000-811X.2014.01.006 |
|
3 |
江净超, 朱阿兴, 秦承志, 等. 2014. 分布式水文模型软件系统研究综述[J]. 地理科学进展, 33(8): 1090-1100.
doi: 10.11820/dlkxjz.2014.08.009 |
[Jiang J C, Zhu A X, Qin C Z, et al.2014. Review on distributed hydrological modelling software systems[J]. Progress in Geography, 33(8): 1090-1100.]
doi: 10.11820/dlkxjz.2014.08.009 |
|
4 |
蒙伟光, 闫敬华, 扈海波. 2007. 城市化对珠江三角洲强雷暴天气的可能影响[J]. 大气科学, 31(2): 364-376.
doi: 10.3878/j.issn.1006-9895.2007.02.17 |
[Meng W G, Yan J H, Hu H B.2007. Possible impact of urbanization on severe thunderstorms over Pearl River Delta[J]. Chinese Journal of Atmospheric Science, 31(2): 364-376.]
doi: 10.3878/j.issn.1006-9895.2007.02.17 |
|
5 | 吴思远. 2013. 广州市城市暴雨内涝成因及雨洪利用技术研究[D]. 广州: 华南理工大学. |
[Wu S Y. 2013. Research on the reasons of urban rainstorm waterlogging and the technology of flood utilization in Guangzhou City[D]. Guangzhou, China: South China University of Technology.] | |
6 | 解以扬, 李大鸣, 李培彦, 等. 2005. 城市暴雨内涝数学模型的研究与应用[J]. 水科学进展, 16(3): 384-390. |
[Xie Y Y, Li D M, Li P Y, et al.2005. Research and application of the mathematical model for urban rainstorm water logging[J]. Advances in Water Science, 16(3): 384-390.] | |
7 |
周玉文, 翁窈瑶, 张晓昕, 等. 2011. 应用年最大值法推求城市暴雨强度公式的研究[J]. 给水排水, 37(10): 40-44.
doi: 10.3969/j.issn.1002-8471.2011.10.008 |
[Zhou Y W, Weng Y Y, Zhang X X, et al.2011. Feasibility study on deriving the urban storm intensity formula through annual maximum value method[J]. Water & Wastewater Engineering, 37(10): 40-44.]
doi: 10.3969/j.issn.1002-8471.2011.10.008 |
|
8 |
Allen M R, Ingram W J.2002. Constraints on future changes in climate and the hydrologic cycle[J]. Nature, 419: 224-232.
doi: 10.1038/nature01092 pmid: 12226677 |
9 |
Andreae M O, Rosenfeld D, Artaxo P, et al.2004. Smoking rain clouds over the Amazon[J]. Science, 303: 1337-1342.
doi: 10.1126/science.1092779 pmid: 14988556 |
10 |
Apel H, Thieken A H, Merz B, et al.2004. Flood risk assessment and associated uncertainty[J]. Natural Hazards and Earth System Sciences, 4(2): 295-308.
doi: 10.5194/nhess-4-295-2004 |
11 | Arnold C L Jr, Gibbons C J.1996. Impervious surface coverage: The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 62(2): 243-258. |
12 |
Arnold J G, Fohrer N.2005. SWAT 2000: Current capabilities and research opportunities in applied watershed modeling[J]. Hydrological Processes, 19: 563-572.
doi: 10.1002/hyp.5611 |
13 | Aron G, Lakatos D F.1990. Penn state runoff model-users manual[D]. University Park, PA: The Pennsylvania State University. |
14 |
Aryal S K, Bates B C, Campbell E P, et al.2009. Characterizing and modeling temporal and spatial trends in rainfall extremes[J]. Journal of Hydrometeorology, 10(1): 241-253.
doi: 10.1175/2008JHM1007.1 |
15 | Beguería S, Vicente-Serrano S M.2005. Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques[J]. Journal of Applied Meteorology and Climatology, 45(1): 108-124. |
16 |
Beighley R E, Moglen G E.2003. Adjusting measured peak discharges from an urbanizing watershed to reflect a stationary land use signal[J]. Water Resources Research, 39(4): doi: 10.1029/2002WR001846.
doi: 10.1029/2002WR001846 |
17 |
Beven K.1997. TOPMODEL: A critique[J]. Hydrological Processes, 11(9): 1069-1085.
doi: 10.1002/(SICI)1099-1085(199707)11:93.0.CO;2-O |
18 |
Bonazzi A, Cusack S, Mitas C, et al.2012. The spatial structure of European wind storms as characterized by bivariate extreme-value copulas[J]. Natural Hazards and Earth System Sciences, 12(5): 1769-1782.
doi: 10.5194/nhess-12-1769-2012 |
19 | Bornstein R, Lin Q L.2000. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies[J]. Atmospheric Environment, 34(3): 507-516. |
20 |
Borys R D, Lowenthal D H, Mitchell D L.2000. The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds[J]. Atmospheric Environment, 34(16): 2593-2602.
doi: 10.1016/S1352-2310(99)00492-6 |
21 |
Bouwer L M.2011. Have disaster losses increased due to anthropogenic climate change[J]. Bulletin of the American Meteorological Society, 92(1): 39-46.
doi: 10.1175/2010BAMS3092.1 |
22 |
Bowling L C, Storck P, Lettenmaier D P.2000. Hydrologic effects of logging in western Washington, United States[J]. Water Resources Research, 36(11): doi: 10.1029/2000WR900138.
doi: 10.1029/2000WR900138 |
23 |
Buonomo E, Jones R, Huntingford C, et al.2007. On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations[J]. Quarterly Journal of the Royal Meteorological Society, 133: 65-81.
doi: 10.1002/qj.13 |
24 |
Changnon S A, Demissie M.1996. Detection of changes in streamflow and floods resulting from climate fluctuations and land use-drainage changes[J]. Climatic Change, 32(4): 411-421.
doi: 10.1007/BF00140354 |
25 | Diem J E, Brown D P.2003. Anthropogenic impacts on summer precipitation in central Arizona, U.S.A[J]. The Professional Geographer, 55(3): 343-355. |
26 |
Dixon P G, Mote T L.2003. Patterns and causes of Atlanta's urban heat island-initiated precipitation[J]. Journal of Applied Meteorology, 42(9): 1273-1284.
doi: 10.1175/1520-0450(2003)0422.0.CO;2 |
27 |
Easterling D R, Meehl G A, Parmesan C, et al.2000. Climate extremes: Observations, modeling, and impacts[J]. Science, 289: 2068-2074.
doi: 10.1126/science.289.5487.2068 pmid: 11000103 |
28 |
Easton Z M, Gérard-Marchant P, Walter M T, et al.2007. Hydrologic assessment of an urban variable source watershed in the northeast United States[J]. Water Resources Research, 43(3): doi: 10.1029/2006WR005076.
doi: 10.1029/2006WR005076 |
29 |
Franchini M, Pacciani M.1991. Comparative analysis of several conceptual rainfall-runoff models[J]. Journal of Hydrology, 122(1-4): 161-219.
doi: 10.1016/0022-1694(91)90178-K |
30 | Frank M J.1979. On the simultaneous associativity of F(x, y) and x+y-F(x, y)[J]. Aequationes Mathematicae, 19(1): 194-226. |
31 |
Genest C, Favre A C, Béliveau J, et al.2007. Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data[J]. Water Resources Research, 43(9): doi: 10.1029/2006WR005275.
doi: 10.1029/2006WR005275 |
32 |
Goubanova K, Li L.2007. Extremes in temperature and precipitation around the Mediterranean Basin in an ensemble of future climate scenario simulations[J]. Global and Planetary Change, 57(1-2): 27-42.
doi: 10.1016/j.gloplacha.2006.11.012 |
33 |
Graf W L.1977. Network characteristics in suburbanizing streams[J]. Water Resources Research, 13(2): doi: 10.1029/WR013i002p00459.
doi: 10.1029/WR013i002p00459 |
34 |
Gregory J H, Dukes M D, Jones P H, et al.2006. Effect of urban soil compaction on infiltration rate[J]. Journal of Soil and Water Conservation, 61(3): 117-124.
doi: 10.1016/j.geoderma.2005.05.009 |
35 |
Guo X L, Fu D H, Wang J.2006. Mesoscale convective precipitation system modified by urbanization in Beijing City[J]. Atmospheric Research, 82(1-2): 112-126.
doi: 10.1016/j.atmosres.2005.12.007 |
36 |
Hand L M, Shepherd J M.2009. An Investigation of warm-season spatial rainfall variability in Oklahoma City: Possible linkages to urbanization and prevailing wind[J]. Journal of Applied Meteorology and Climatology, 48(2): 251-269.
doi: 10.1175/2008JAMC2036.1 |
37 |
Hanel M, Buishand T A, Ferro C A T.2009. A nonstationary index flood model for precipitation extremes in transient regional climate model simulations[J]. Journal of Geophysical Research: Atmospheres, 114(D15): doi: 10.1029/2009JD011712.
doi: 10.1029/2009JD011712 |
38 |
Hollis G E.1975. The effect of urbanization on floods of different recurrence interval[J]. Water Resources Research, 11(3): doi: 10.1029/WR011i003p00431.
doi: 10.1029/WR011i003p00431 |
39 |
Hsu M H, Chen S H, Chang T J.2000. Inundation simulation for urban drainage basin with storm sewer system[J]. Journal of Hydrology, 234(1-2): 21-37.
doi: 10.1016/S0022-1694(00)00237-7 |
40 |
Hu H B.2014. An algorithm for converting weather radar data into GIS polygons and its application in severe weather warning systems[J]. International Journal of Geographical Information Science, 28(9): 1765-1780.
doi: 10.1080/13658816.2014.898767 |
41 |
Hu H B.2015. Spatiotemporal characteristics of rainstorm-induced hazards modified by urbanization in Beijing[J]. Journal of Applied Meteorology and Climatology, 54(7): 1496-1509.
doi: 10.1175/JAMC-D-14-0267.1 |
42 | Hu H B, Wang J, Pan J.2014. The characteristics of lightning risk and zoning in Beijing simulated by a risk assessment model[J]. Natural Hazards and Earth System Sciences, 14(8): 1985-1997. |
43 | IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge University Press. |
44 |
Johnson M S, Coon W F, Mehta V K, et al.2003. Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: A comparison of HSPF and SMR[J]. Journal of Hydrology, 284(1-4): 57-76.
doi: 10.1016/j.jhydrol.2003.07.005 |
45 |
Jongman B, Kreibich H, Apel H, et al.2012. Comparative flood damage model assessment: Towards a European approach[J]. Natural Hazards and Earth System Sciences, 12(12): 3733-3752.
doi: 10.5194/nhess-12-3733-2012 |
46 |
Kaufmann R K, Seto K C, Schneider A, et al.2007. Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit[J]. Journal of Climate, 20(10): 2299-2306.
doi: 10.1175/JCLI4109.1 |
47 |
Krishnamurthy C K B, Lall U, Kwon H H.2009. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003[J]. Journal of Climate, 22(18): 4737-4746.
doi: 10.1175/2009JCLI2896.1 |
48 |
Kubal C, Haase D, Meyer V, et al.2009. Natural hazards and earth system sciences integrated urban flood risk assessment-adapting a multicriteria approach to a city[J]. Natural Hazards and Earth System Sciences, 9(6): 1881-1895.
doi: 10.5194/nhess-9-1881-2009 |
49 |
Kunkel K E, Pielke R A Jr, Changnon S A.1999. Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review[J]. Bulletin of the American Meteorological Society, 80(6): 1077-1098.
doi: 10.1175/1520-0477(1999)0802.0.CO;2 |
50 | Lee J G, Heaney J P.2003. Estimation of urban imperviousness and its impacts on storm water systems[J]. Journal of Water Resources Planning and Management, 129(5): 419-426. |
51 |
Meyer V, Scheuer S, Haase D.2009. A multicriteria approach for flood risk mapping exemplified at the Mulde River, Germany[J]. Natural Hazards, 48(1): 17-39.
doi: 10.1007/s11069-008-9244-4 |
52 |
Mills G.2007. Cities as agents of global change[J]. International Journal of Climatology, 27(14): 1849-1857.
doi: 10.1002/joc.1604 |
53 | Mölders N, Olson M A.2004. Impact of urban effects on precipitation in high latitudes[J]. Journal of Hydrometeorology, 5(3): 409-429. |
54 |
Moscrip A L, Montgomery D R.1997. Urbanization, flood frequency, and salmon abundance in Puget Lowland streams[J]. Journal of the American Water Resources Association, 33(6): 1289-1297.
doi: 10.1111/j.1752-1688.1997.tb03553.x |
55 |
Mote T L, Lacke M C, Shepherd J M.2007. Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia[J]. Geophysical Research Letters, 34(20): L20710.
doi: 10.1029/2007GL031903 |
56 | Nelsen R B.1999. An introduction to copulas[M]. New York: Springer-Verlag. |
57 |
Ogden F L, Sharif H O, Senarath S U S, et al.2000. Hydrologic analysis of the Fort Collins, Colorado, flash flood of 1997[J]. Journal of Hydrology, 228(1-2): 82-100.
doi: 10.1016/S0022-1694(00)00146-3 |
58 |
Peterson T C, Hoerling M P, Stott P A, et al.2013. Explaining extreme events of 2012 from a climate perspective[J]. Bulletin of the American Meteorological Society, 94(9): S1-S74.
doi: 10.1175/BAMS-D-13-00085.1 |
59 |
Pielke R A, Adegoke J, Beltrán-Przekurat A, et al.2007. An overview of regional land- use and land-cover impacts on rainfall[J]. Tellus: Chemical and Physical Meteorology, 59(3): 587-601.
doi: 10.1111/j.1600-0889.2007.00251.x |
60 |
Price C, Rind D.1994. Possible implications of global climate change on global lightning distributions and frequencies[J]. Journal of Geophysical Research: Atmospheres, 99(D5): doi: 10.1029/94JD00019.
doi: 10.1029/94JD00019 |
61 |
Prosdocimi I, Kjeldsen T R, Miller J D.2015. Detection and attribution of urbanization effect on flood extremes using nonstationary flood-frequency models[J]. Water Resources Research, 51(6): doi: 10.1002/2015WR017065.
doi: 10.1002/2015WR017065 pmid: 26877559 |
62 |
Prudhomme C, Reed D W.1999. Mapping extreme rainfall in a mountainous region using geostatistical techniques: A case study in Scotland[J]. International Journal of Climatology, 19(12): 1337-1356.
doi: 10.1002/(SICI)1097-0088(199910)19:123.0.CO;2-G |
63 |
Ramanathan V, Crutzen P J, Kiehl J T, et al.2001. Aerosols, climate, and the hydrological cycle[J]. Science, 294: 2119-2124.
doi: 10.1126/science.1064034 pmid: 174893265202520318 |
64 | Rossman L A.2010. Storm water management model user's manual, version 5.0. Tech Rep. EPA/600/R-05/040[M]. Cincinnati, OH: U.S. EPA National Risk Management Research Laboratory. |
65 | Rozoff C M, Cotton W R, Adegoke J O.2003. Simulation of St. Louis, Missouri, land use impacts on thunderstorms[J]. Journal of Applied Meteorology, 42(6): 716-738. |
66 |
Scawthorn C, Flores P, Blais N, et al.2006. HAZUS-MH flood loss estimation methodology. II. Damage and loss assessment[J]. Natural Hazards Review, 7(2): 72-81.
doi: 10.1061/(ASCE)1527-6988(2006)7:2(72) |
67 |
Sharif H O, Yates D, Roberts R, et al.2006. The use of an automated nowcasting system to forecast flash floods in an urban watershed[J]. Journal of Hydrometeorology, 7(1): 190-202.
doi: 10.1175/JHM482.1 |
68 |
Sheeder S A, Ross J D, Carlson T N.2002. Dual urban and rural hydrograph signals in three small watersheds[J]. Journal of the American Water Resources Association, 38(4): 1027-1040.
doi: 10.1111/j.1752-1688.2002.tb05543.x |
69 |
Shepherd J M.2005. A review of current investigations of urban-induced rainfall and recommendations for the future[J]. Earth Interactions, 9(12): 1-27.
doi: 10.1175/EI156.1 |
70 | Shepherd J M, Burian S J.2003. Detection of urban-induced rainfall anomalies in a major coastal city[J]. Earth Interactions, 7(4): 1-16. |
71 |
Shepherd J M, Mote T, Dowd J, et al.2011. An overview of synoptic and mesoscale factors contributing to the disastrous Atlanta flood of 2009[J]. Bulletin of the American Meteorological Society, 92(7): 861-870.
doi: 10.1175/2010BAMS3003.1 |
72 | Shepherd J M, Pierce H, Negri A J.2002. Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite[J]. Journal of Applied Meteorology, 41(7): 689-701. |
73 |
Smith J A, Baeck M L, Meierdiercks K L, et al.2005. Field studies of the storm event hydrologic response in an urbanizing watershed[J]. Water Resources Research, 41(10): doi: 10.1029/2004WR003712.
doi: 10.1029/2004WR003712 |
74 | Smith J A, Baeck M L, Morrison J E, et al.2002. The regional hydrology of extreme floods in an urbanizing drainage basin[J]. Journal of Hydrometeorology, 3(3): 267-282. |
75 |
Smith J A, Bradley A A, Baeck M L.1994. The space-time structure of extreme storm rainfall in the southern plains[J]. Journal of Applied Meteorology, 33(12): 1402-1417.
doi: 10.1175/1520-0450(1994)0332.0.CO;2 |
76 |
Smith J A, Miller A J, Baeck M L, et al.2005. Extraordinary flood response of a small urban watershed to short-duration convective rainfall[J]. Journal of Hydrometeorology, 6(5): 599-617.
doi: 10.1175/JHM426.1 |
77 |
Stallins J A, Rose L S.2008. Urban lightning: Current research, methods, and the geographical perspective[J]. Geography Compass, 2(3): 620-639.
doi: 10.1111/j.1749-8198.2008.00110.x |
78 |
Sun X, Mein R G, Keenan T D, et al.2000. Flood estimation using radar and raingauge data[J]. Journal of Hydrology, 239(1-4): 4-18.
doi: 10.1016/S0022-1694(00)00350-4 |
79 |
Tang Z, Engel B A, Pijanowski B C, et al.2005. Forecasting land use change and its environmental impact at a watershed scale[J]. Journal of Environmental Management, 76(1): 35-45.
doi: 10.1016/j.jenvman.2005.01.006 pmid: 15854735 |
80 |
Tilford K A, Fox N I, Collier C G.2002. Application of weather radar data for urban hydrology[J]. Meteorological Applications, 9(1): 95-104.
doi: 10.1017/S135048270200110X |
81 | Tim L, Bornstein R D.1977. Observations of mesoscale effects on frontal movement through an urban area[J]. Monthly Weather Review, 105(5): 563-571. |
82 | Trenberth K E, Jones P D.2007. Observations: Surface and atmospheric climate change[M]//Solomon S, Qin D, Manning M, et al. Climate change 2007: Working group I: The physical science basis. Cambridge, UK: Cambridge University Press: 235-336. |
83 |
Turner-Gillespie D F, Smith J A, Bates P D.2003. Attenuating reaches and the regional flood response of an urbanizing drainage basin[J]. Advances in Water Resources, 26(6): 673-684.
doi: 10.1016/S0309-1708(03)00017-4 |
84 | United Nations Population Fund.2007. Growing up urban: state of world population 2007: Youth supplement[M]. New York: United Nations Publications. |
85 | Valeo C, Moin S M A.1999. Variable source area modelling in urbanizing watersheds[J]. Journal of Hydrology, 228(1-2): 68-81. |
86 |
Wetterhall F, Graham L P, Andréasson J, et al.2011. Using ensemble climate projections to assess probabilistic hydrological change in the Nordic region[J]. Natural Hazards and Earth System Sciences, 11(8): 2295-2306.
doi: 10.5194/nhess-11-2295-2011 |
87 |
Wolff C G, Burges S J.1994. An analysis of the influence of river channel properties on flood frequency[J]. Journal of Hydrology, 153(1-4): 317-337.
doi: 10.1016/0022-1694(94)90197-X |
88 |
Wright D B, Smith J A, Villarini G, et al.2012. Hydroclimatology of flash flooding in Atlanta[J]. Water Resources Research, 48(4): doi: 10.1029/2011WR011371.
doi: 10.1029/2011WR011371 |
89 | Yang G X, Bowling L C, Cherkauer K A, et al.2010. Hydroclimatic response of watersheds to urban intensity: An observational and modeling-based analysis for the White River Basin, Indiana[J]. Journal of Hydrometeorology, 11(1): 122-138. |
90 |
Yu R C, Li J, Yuan W H, et al.2010. Changes in characteristics of late-summer precipitation over eastern China in the past 40 years revealed by hourly precipitation data[J]. Journal of Climate, 23(12): 3390-3396.
doi: 10.1175/2010JCLI3454.1 |
91 |
Zhang C L, Chen F, Miao S G, et al.2009. Impacts of urban expansion and future green planting on summer precipitation in the Beijing Metropolitan Area[J]. Journal of Geophysical Research: Atmospheres, 114(D2): doi:10.1029/2008JD010328.
doi: 10.1029/2008JD010328 |
92 | Zhou T J, Song F F, Lin R P, et al.2013. The 2012 north china floods: Explaining an extreme rainfall event in the context of a longer-term drying tendency[J]. Bulletin of the American Meteorological Society, 94(9): S49-S52. |
[1] | HU Guojian, LU Yuqi. Progress, thoughts, and prospect of urban network research based on enterprise perspective [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1587-1596. |
[2] | REN Jiamin, MA Yanji. Research progress and prospects of green development from the perspective of geography [J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1196-1209. |
[3] | HUANG An, XU Yueqing, LU Longhui, LIU Chao, ZHANG Yibin, HAO Jinmin, WANG hui. Research progress of the identification and optimization of production-living-ecological spaces [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 503-518. |
[4] | QIE Jiazhi, ZHANG Yong. Advances in flash flood research based on dendrogeomorphology [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 519-528. |
[5] | ZOU Lilin, LIU Yansui, WANG Yongsheng. Research progress and prospect of land-use conflicts in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(2): 298-309. |
[6] | YANG Jun, YOU Haolin, ZHANG Yuqing, JIN Cui. Research progress on human settlements: From traditional data to big data+ [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 166-176. |
[7] | Hui WANG, Changchun SONG. Regional ecological risk assessment of wetlands in the Sanjiang Plain [J]. PROGRESS IN GEOGRAPHY, 2019, 38(6): 872-882. |
[8] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[9] | Dongsheng ZHAN, Wenzhong ZHANG, Li Chen, Xiaofen YU, Yunxiao DANG. Research progress and its enlightenment of urban public service facilities allocation [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 506-519. |
[10] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[11] | Xiaoshu CAO, Peiting HU, Dan LIU. Progress of research on electric vehicle charging stations [J]. PROGRESS IN GEOGRAPHY, 2019, 38(1): 139-152. |
[12] | Yinfeng XU, Degen WANG. Research progress and prospects of high-speed rail effects on urban spatial structure in China [J]. PROGRESS IN GEOGRAPHY, 2018, 37(9): 1216-1230. |
[13] | Ning ZHANG, Dawei WANG. Drug-related crime risk assessment and predictive policing based on risk terrain modeling [J]. PROGRESS IN GEOGRAPHY, 2018, 37(8): 1131-1139. |
[14] | Wenyan HU, Mengya LI, Jun WANG, Qingyu HUANG. Urban traffic congestion caused by rainstorms and innudation [J]. PROGRESS IN GEOGRAPHY, 2018, 37(6): 772-780. |
[15] | Weijiang LI, Jiahong WEN, Xiande LI. Progress of research on economic loss assessment of disasters in industrial networks [J]. PROGRESS IN GEOGRAPHY, 2018, 37(3): 330-341. |
|