PROGRESS IN GEOGRAPHY ›› 2015, Vol. 34 ›› Issue (10): 1288-1296.doi: 10.18306/dlkxjz.2015.10.009
• Model and Remote Sensing Application • Previous Articles Next Articles
Received:
2015-02-01
Accepted:
2015-05-01
Online:
2015-10-20
Published:
2015-10-20
Xinxin ZHANG. DEM application in the extraction of active fault location and active fault surface deformation features[J].PROGRESS IN GEOGRAPHY, 2015, 34(10): 1288-1296.
1 | 刘静, 陈涛, 张培震, 等. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 58(1): 41-45. |
[Liu J, Chen T, Zhang P Z, et al.2013. Illuminating the active Haiyuan fault, China by airborne light detection and ranging[J]. Chinese Science Bulletin, 58(1): 41-45.] | |
2 | Argialas D P, Mavrantza O D.2004. Comparison of edge detection and Hough transform techniques for the extraction of geologic features[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34: 790-795. |
3 | Arrowsmith J R, Zielke O.2009. Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: an example from the Cholame segment[J]. Geomorphology, 113(1-2): 70-81. |
4 | Begg J G, Mouslopoulou V.2010. Analysis of late Holocene faulting within an active rift using LiDAR, Taupo Rift, New Zealand[J]. Journal of Volcanology and Geothermal Research, 190(1-2): 152-167. |
5 | Brunori C A, Civico R, Cinti F R, et al.2013. Characterization of active fault scarps from LiDAR data: a case study from Central Apennines (Italy)[J]. International Journal of Geographical Information Science, 27(7): 1405-1416. |
6 | Burbank D W, Anderson R S.2011. Tectonic Geomorphology[M]. 2nd ed. Oxford, UK: Wiley-Blackwell. |
7 | Chan Y C, Chen Y G, Shih T Y, et al.2007. Characterizing the Hsincheng active fault in northern Taiwan using airborne LiDAR data: detailed geomorphic features and their structural implications[J]. Journal of Asian Earth Sciences, 31(3): 303-316. |
8 | Chen T, Zhang P Z, Liu J, et al.2014. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR[J]. Chinese Science Bulletin, 59(20): 2396-2409. |
9 | Chorowicz J, Collet B, Bonavia F F, et al.1998. The Tana Basin, Ethiopia: intra-plateau uplift, rifting and subsidence[J]. Tectonophysics, 295(3): 351-367. |
10 | Chorowicz J, Dhont D, Gündoğdu N.1999. Neotectonics in the eastern North Anatolian fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model[J]. Journal of Structural Geology, 21(5): 511-532. |
11 | Cowgill E, Bernardin T S, Oskin M E, et al.2012. Interactive terrain visualization enables virtual field work during rapid scientific response to the 2010 Haiti earthquake[J]. Geosphere, 8(4): 787-804. |
12 | Cunningham D, Grebby S, Tansey K, et al.2006. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia[J]. Geophysical Research Letters, 33(20): L20308. |
13 | Demirkesen A C.2008. Digital terrain analysis using Landsat-7 ETM+ imagery and SRTM DEM: a case study of Nevsehir Province (Cappadocia), Turkey[J]. International Journal of Remote Sensing, 29(14): 4173-4188. |
14 | Demirkesen A C.2009. Quantifying geological structures of the Nigde Province in central Anatolia, Turkey using SRTM DEM data[J]. Environmental Geology, 56(5): 865-875. |
15 | Dumont J F, Santana E, Vilema W.2005. Morphologic evidence of active motion of the Zambapala Fault, Gulf of Guayaquil (Ecuador)[J]. Geomorphology, 65(3): 223-239. |
16 | Engelkemeir R M, Khan S D.2008. LiDAR mapping of faults in Houston, Texas, USA[J]. Geosphere, 4(1): 170-182. |
17 | Flores-Prieto E, Quénéhervé G, Bachofer F, et al.2015. Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data[J]. Geomorphology, 248: 427-439. |
18 | Florinsky I V.1996. Quantitative topographic method of fault morphology recognition[J]. Geomorphology, 16(2): 103-119. |
19 | Ganas A, Pavlides S, Karastathis V.2005. DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates[J]. Geomorphology, 65(3-4): 301-319. |
20 | Ganev P N, Dolan J F, Frankel K L, et al.2010. Rates of extension along the Fish Lake Valley fault and transtensional deformation in the Eastern California shear zone-Walker Lane belt[J]. Lithosphere, 2(1): 33-49. |
21 | Glennie C L, Hinojosa-Corona A, Nissen E, et al.2014. Optimization of legacy LiDAR data sets for measuring near-field earthquake displacements[J]. Geophysical Research Letters, 41(10): 3494-3501. |
22 | Gloaguen R, Marpu P R, Niemeyer I.2007. Automatic extraction of faults and fractal analysis from remote sensing data[J]. Nonlinear Processes in Geophysics, 14(2): 131-138. |
23 | Grebby S, Cunningham D, Naden J, et al.2012. Application of airborne LiDAR data and airborne multispectral imagery to structural mapping of the upper section of the Troodos ophiolite, Cyprus[J]. International Journal of Earth Sciences, 101(6): 1645-1660. |
24 | Guarnieri P, Pirrotta C.2008. The response of drainage basins to the late Quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily)[J]. Geomorphology, 95(3): 260-273. |
25 | Haugerud R A, Harding D J, Johnson S Y, et al.2003. High-resolution lidar topography of the Puget Lowland, Washington[J]. GSA Today, 13(6): 4-10. |
26 | Hayakawa Y S, Oguchi T.2006. DEM-based identification of fluvial knickzones and its application to Japanese mountain rivers[J]. Geomorphology, 78: 90-106. |
27 | Hilley G E, DeLong S, Prentice C, et al.2010. Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data[J]. Geophysical Research Letters, 37(4): L04301. |
28 | Hooper D M, Bursik M I, Webb F H.2003. Application of high-resolution, interferometric DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada-California, USA[J]. Remote Sensing of Environment, 84(2): 255-267. |
29 | Hunter L E, Howle J F, Rose R S, et al.2011. LiDAR-assisted identification of an active fault near Truckee, California[J]. Bulletin of the Seismological Society of America, 101(3): 1162-1181. |
30 | Jackson J, Norris R, Youngson J.1996. The structural evolution of active fault and fold systems in central Otago, New Zealand: evidence revealed by drainage patterns[J]. Journal of Structural Geology, 18(2): 217-234. |
31 | Johnson K, Nissen E, Saripalli S, et al.2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5): 969-986. |
32 | Jordan G, Meijninger B M L, Van H D J J, et al.2005. Extraction of morphotectonic features from DEMs: development and applications for study areas in Hungary and NW Greece[J]. International Journal of Applied Earth Observation and Geoinformation, 7(3): 163-182. |
33 | Jordan G.2003. Morphometric analysis and tectonic interpretation of digital terrain data: a case study[J]. Earth Surface Processes and Landforms, 28(8): 807-822. |
34 | Koike K, Nagano S, Michito O.1995. Lineament analysis of satellite images using a segment tracing algorithm (STA)[J]. Computers & Geosciences, 21(9): 1091-1104. |
35 | Kondo H, Toda S, Okumura K, et al.2008. A fault scarp in an urban area identified by LiDAR survey: a case study on the Itoigawa-Shizuoka Tectonic Line, central Japan[J]. Geomorphology, 101(4): 731-739. |
36 | Lin Z, Kaneda H, Mukoyama S, et al.2013. Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey[J]. Geomorphology, 182: 104-115. |
37 | Mallast U, Gloaguen R, Geyer S, et al.2011. Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data[J]. Hydrology and Earth System Sciences, 15(8): 2665-2678. |
38 | Marghany M, Hashim M.2010. Lineament mapping using multispectral remote sensing satellite data[J]. Research Journal of Applied Sciences, 5(2): 126-130. |
39 | Masoud A A, Koike K.2011a. Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6): 818-832. |
40 | Masoud A A, Koike K.2011b. Morphotectonics inferred from the analysis of topographic lineaments auto-detected from DEMs: application and validation for the Sinai Peninsula, Egypt[J]. Tectonophysics, 510(3-4): 291-308. |
41 | Meigs A.2013. Active tectonics and the LiDAR revolution[J]. Lithosphere, 5(2): 226-229. |
42 | Nissen E, Maruyama T, Arrowsmith J R, et al.2014. Coseismic fault zone deformation revealed with differential LiDAR: examples from Japanese Mw~7 intraplate earthquakes[J]. Earth and Planetary Science Letters, 405: 244-256. |
43 | Novak I D, Soulakellis N.2000. Identifying geomorphic features using LANDSAT-5/TM data processing techniques on Lesvos, Greece[J]. Geomorphology, 34(1): 101-109. |
44 | Nyborg M, Berglund J, Triumf C A.2007. Detection of lineaments using airborne laser scanning technology: laxemar-simpevarp, Sweden[J]. Hydrogeology Journal, 15(1): 29-32. |
45 | Oguchi T, Aoki T, Matsuta N.2003. Identification of an active fault in the Japanese Alps from DEM-based hill shading[J]. Computers and Geosciences, 29(7): 885-891. |
46 | Oskin M E, Arrowsmith J R, Corona A H, et al.2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR[J]. Science, 335: 702-705. |
47 | Petit C, Gunnell Y, Gonga S N, et al.2009. Faceted spurs at normal fault scarps: insights from numerical modeling[J]. Journal of Geophysical Research, 114(B5): B05403. |
48 | Petit C, Meyer B, Gunnell Y, et al.2009. Height of faceted spurs, a proxy for determining long-term throw rates on normal faults: evidence from the North Baikal Rift System, Siberia[J]. Tectonics, 28(6): TC6010. |
49 | Roering J J, Mackey B H, Marshall J A, et al.2013. 'You are here': connecting the dots with airborne LiDAR for geomorphic fieldwork[J]. Geomorphology, 200: 172-183. |
50 | Saadi N M, Watanabe K.2008. Lineaments extraction and analysis in Eljufra area, Libya[J]. Journal of Applied Remote Sensing, 2(1): 023538. |
51 | Saadi N M, Zaher M A, El-Baz F, et al.2011. Integrated remote sensing data utilization for investigating structural and tectonic history of the Ghadames Basin, Libya[J]. International Journal of Applied Earth Observation and Geoinformation, 13(5): 778-791. |
52 | Salisbury J B, Rockwell T K, Middleton T J, et al.2012. LiDAR and field observations of slip distribution for the most recent surface ruptures along the central San Jacinto Fault[J]. Bulletin of the Seismological Society of America, 102(2): 598-619. |
53 | Samy I E, Shattri M, Bujang B K H, et al.2012. Application of terrain analysis to the mapping and spatial pattern analysis of subsurface geological fractures of Kuala Lumpur limestone bedrock, Malaysia[J]. International Journal of Remote Sensing, 33(10): 3176-3196. |
54 | Sherrod B L, Brocher T M, Weaver C S, et al.2004. Holocene fault scarps near Tacoma, Washington, USA[J]. Geology, 32(1): 9-12. |
55 | Štěpančíková P, Stemberk J, Vilímek V, et al.2008. Neotectonic development of drainage networks in the East Sudeten Mountains and monitoring of recent fault displacements (Czech Republic)[J]. Geomorphology, 102(1): 68-80. |
56 | Tarolli P.2014. High-resolution topography for understanding Earth surface processes: opportunities and challenges[J]. Geomorphology, 216: 295-312. |
57 | Walker F, Allen M B.2012. Offset rivers, drainage spacing and the record of strike-slip faulting: The Kuh Banan Fault, Iran[J]. Tectonophysics, 530: 251-263. |
58 | Wechsler N, Rockwell T K., Ben-Zion Y.2009. Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jacinto Fault[J]. Geomorphology, 113(1): 82-96. |
59 | Wei Z Y, Bi L S, Xu Y R, et al.2015. Evaluating knickpoint recession along an active fault for paleoseismological analysis: The Huoshan Piedmont, Eastern China[J]. Geomorphology, 235: 63-76. |
60 | Wells D L, Coppersmith K J.1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. |
61 | Wiatr T, Reicherter K, Papanikolaou I, et al.2013. Slip vector analysis with high resolution t-LiDAR scanning[J]. Tectonophysics, 608: 947-957. |
62 | Zachariasen J, Prentice C S.2008. Detailed mapping of the Northern San Andreas Fault using LiDAR imagery[J]. Final Technical Report of National Earthquake Hazards Reduction Program, 47: 05HQGR0069. |
63 | Zielke O, Arrowsmith J R, Ludwig L G, et al.2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327: 1119-1122. |
64 | Zielke O, Arrowsmith J R, Ludwig L G, et al.2012. High-resolution topography-derived offsets along the 1857 Fort Tejon earthquake rupture trace, San Andreas Fault[J]. Bulletin of the Seismological Society of America, 102(3): 1135-1154. |
65 | Zielke O, Arrowsmith J R.2012. LaDiCaoz and LiDARimager-MATLAB GUIs for LiDAR data handling and lateral displacement measurement[J]. Geosphere, 8(1): 206-221. |
[1] | QIN Chengzhi,YANG Lin,ZHU A- Xing,LI Baolin,PEI Tao,ZHOU Chenghu. Computation Method of Topogr aphic Wetness Index in Low Relief Ar ea [J]. PROGRESS IN GEOGRAPHY, 2006, 25(6): 87-93. |
[2] | LIU Ruimin,YANG Zhifeng,SHEN Zhenyao,DING Xiaowen,WU Xing,LIU Fang. Study on Land Use/Cover Change in Upper Reach of Yangtze River Basin Based on the DEM Data [J]. PROGRESS IN GEOGRAPHY, 2006, 25(1): 102-108. |
|