PROGRESS IN GEOGRAPHY ›› 2015, Vol. 34 ›› Issue (8): 937-946.doi: 10.18306/dlkxjz.2015.08.001
• Orginal Article • Next Articles
CHEN Kai1,2(), LIU Kai1,2,*(
), LIU Lin1,2, ZHU Yuanhui1,2
Online:
2015-08-25
Published:
2015-08-25
Contact:
LIU Kai
E-mail:cksysu@foxmail.com;liuk6@mail.sysu.edu.cn
CHEN Kai, LIU Kai, LIU Lin, ZHU Yuanhui. Urban expansion simulation by random-forest-based cellular automata: a case study of Foshan City[J].PROGRESS IN GEOGRAPHY, 2015, 34(8): 937-946.
Tab. 3
Confusion matrix of the RF-CA model and logistic CA model simulation results"
年份 | 类型 | 随机森林模型 | 逻辑回归模型 | ||||||
---|---|---|---|---|---|---|---|---|---|
非城市 | 城市 | 精度/% | 非城市 | 城市 | 精度/% | ||||
1988-2000年 | 遥感分类图 | 非城市 | 3444759 | 220694 | 94.0 | 3406151 | 259302 | 92.9 | |
城市 | 220008 | 383507 | 63.6 | 253128 | 350387 | 58.1 | |||
总精度 | 89.7 | 88.0 | |||||||
Kappa | 0.580 | 0.508 | |||||||
2000-2012年 | 遥感分类图 | 非城市 | 2901659 | 360751 | 88.9 | 2844209 | 418201 | 87.2 | |
城市 | 360647 | 645911 | 64.2 | 416346 | 590212 | 58.6 | |||
总精度 | 83.1 | 80.5 | |||||||
Kappa | 0.531 | 0.458 |
1 | 蔡林霖. 2013. 随机森林的模型选择及其并行化方法[D]. 哈尔滨: 哈尔滨工业大学. |
[Cai L L.2013. Model selection of random forest and its parallelization[D]. Harbin, China: Harbin Institute of Technology.] | |
2 | 段晓东, 王存睿, 刘向东. 2012. 元胞自动机理论研究及其仿真应用[M]. 北京: 科学出版社. |
[Duan X D, Wang C R, Liu X D.2012. Cellular automata theory research and simulation applications[M]. Beijing, China: Science Press.] | |
3 | 方匡南, 吴见彬, 朱建平, 等. 2011. 随机森林方法研究综述[J]. 统计与信息论坛, 26(3): 32-38. |
[Fang K N, Wu J B, Zhu J P, et al.2011. A review of technologies on random forests[J]. Statistics & Information Forum, 26(3): 32-38.] | |
4 | 冯永玖, 刘妙龙, 童小华, 等. 2010. 基于核主成分元胞模型的城市演化重建与预测[J]. 地理学报, 65(6): 665-675. |
[Feng Y J, Liu M L, Tong X H, et al.2010. Kernel principal components analysis based cellular model for restructuring and predicting urban evolution[J]. Acta Geographica Sinica, 65(6): 665-675.] | |
5 | 冯永玖, 刘艳, 韩震. 2011. 不同样本方案下遗传元胞自动机的土地利用模拟及景观评价[J]. 应用生态学报, 22(4): 957-963. |
[Feng Y J, Liu Y, Han Z.2011. Land use simulation and landscape assessment by using genetic algorithm based on cellular automata under different sampling schemes[J]. Chinese Journal of Applied Ecology, 22(4): 957-963.] | |
6 | 何春阳, 史培军, 陈晋, 等. 2005. 基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J]. 中国科学: 地球科学, 35(5): 464-473. |
[He C Y, Shi P J, Chen J, et al.2005. Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model[J]. Science in China: Earth Sciences, 48(11): 1979-1989.] | |
7 | 柯新利, 孟芬, 马才学. 2014. 基于粮食安全与经济发展区域差异的土地资源优化配置: 以武汉城市圈为例[J]. 资源科学, 36(8): 1572-1578. |
[Ke X L, Meng F, Ma C X.2014. Optimizing land resource allocation based on food security and regional difference in economic development: a case study in Wuhan metropolitan[J]. Resources Science, 36(8): 1572-1578.] | |
8 | 廖江福, 唐立娜, 王翠平, 等. 2014. 城市元胞自动机扩展邻域效应的测量与校准研究[J]. 地理科学进展, 33(12): 1624-1633. |
[Liao J F, Tang L N, Wang C P, et al.2014. Measuring and calibrating extended neighborhood effect of urban cellular automata model based on particle swarm optimization[J]. Progress in Geography, 33(12): 1624-1633.] | |
9 | 刘小平, 黎夏, 叶嘉安, 等. 2007. 利用蚁群智能挖掘地理元胞自动机的转换规则[J]. 中国科学: 地球科学, 37(6): 824-834. |
[Liu X P, Li X, Yeh A G O, et al.2007. Discovery of transition rules for geographical cellular automata by using ant colony optimization[J]. Science in China : Earth Sciences, 50(10): 1578-1588.] | |
10 | 龙瀛. 2011. 面向空间规划的微观模拟: 数据、模拟与评价[D]. 北京: 清华大学. |
[Long Y.2011. Urban microsimulation for spatial plan: data, modelling, and evaluation[D]. Beijing, China: Tsinghua University.] | |
11 | 王云飞, 庞勇, 舒清态. 2013. 基于随机森林算法的橡胶林地上生物量遥感反演研究: 以景洪市为例[J]. 西南林业大学学报, 33(6): 38-45. |
[Wang Y F, Pang Y, Shu Q T.2013. Counter-estimation on aboveground biomass of Hevea brasiliensis plantation by remote sensing with random forest algorithm: a case study of Jinghong[J]. Journal of Southwest Forestry University, 33(6): 38-45.] | |
12 | 杨青生. 2008. 地理元胞自动机及空间动态转换规则的获取[J]. 中山大学学报: 自然科学版, 47(4): 122-127. |
[Yang Q S.2008. Dynamic transition rules for geographical cellular automata[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 47(4): 122-127.] | |
13 | 杨青生, 黎夏. 2007. 基于遗传算法自动获取CA模型的参数: 以东莞市城市发展模拟为例[J]. 地理研究, 26(2): 229-237. |
[Yang Q S, Li X.2007. Calibrating urban cellular automata using genetic algorithms[J]. Geographical Research, 26(2): 229-237.] | |
14 | 张鸿辉, 尹长林, 曾永年, 等. 2008. 基于SLEUTH模型的城市增长模拟研究: 以长沙市为例[J]. 遥感技术与应用, 23(6): 618-623. |
[Zhang H H, Yin C L, Zeng Y N, et al.2008. Study on urban growth simulation based on SLEUTH model: Changsha City as an example[J]. Remote Sensing Technology and Application, 23(6): 618-623.] | |
15 | 张亦汉, 黎夏, 刘小平, 等. 2013. 耦合遥感观测和元胞自动机的城市扩张模拟[J]. 遥感学报, 17(4): 872-886. |
[Zhang Y H, Li X, Liu X P, et al.2013. Urban expansion simulation by coupling remote sensing observations and cellular automata[J]. Journal of Remote Sensing, 17(4): 872-886.] | |
16 | Breiman L.2001a. Random forests[J]. Machine Learning, 45(1): 5-32. |
17 | Breiman L.2001b. Statistical modeling: the two cultures[J]. Statistical Science, 16(3): 199-231. |
18 | Breiman L, Friedman J H, Stone C J, et al.1984. Classification and regression trees[M]. Boca Raton, FL: CRC press. |
19 | Chen Y M, Li X, Wang S J, et al.2013. Simulating urban form and energy consumption in the Pearl River Delta under different development strategies[J]. Annals of the Association of American Geographers, 103(6): 1567-1585. |
20 | Genuer R, Poggi J -M, Tuleau-Malot C.2010. Variable selection using random forests[J]. Pattern Recognition Letters, 31(14): 2225-2236. |
21 | Hastie T, Tibshirani R, Friedman J H.2008. The elements of statistical learning: data mining, inference, and prediction (2nd ed.)[M]. New York, NY: Springer. |
22 | Kandaswamy K K, Chou K C, Martinetz T, et al.2011. AFP-Pred: a random forest approach for predicting antifreeze proteins from sequence-derived properties[J]. Journal of Theoretical Biology, 270(1): 56-62. |
23 | Li X, Yeh A G O.2001. Calibration of cellular automata by using neural networks for the simulation of complex urban systems[J]. Environment and Planning A, 33(8): 1445-1462. |
24 | Li X, Yeh A G O.2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS[J]. International Journal of Geographical Information Science, 16(4): 323-343. |
25 | Liu X P, Li X, Liu L, et al.2008. A bottom-up approach to discover transition rules of cellular automata using ant intelligence[J]. International Journal of Geographical Information Science, 22(11-12): 1247-1269. |
26 | Peters J, De Baets B, Verhoest N E C, et al.2007. Random forests as a tool for ecohydrological distribution modelling[J]. Ecological Modelling, 207(2-4): 304-318. |
27 | Rodriguez-Galiano V F, Ghimire B, Rogan J, et al.2012. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 67: 93-104. |
28 | Wu F L.2002. Calibration of stochastic cellular automata: the application to rural-urban land conversions[J]. International Journal of Geographical Information Science, 16(8): 795-818. |
[1] | SHI Lifeng,HUANG Xianjin. Spatiotemporal differences of urban expansion along China’s Grand Canal [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1206-1216. |
[2] | Limin JIAO, Chen GONG, Gang XU, Ting DONG, Boen ZHANG, Zehui LI. Urban expansion dynamics and urban forms in three metropolitan areas—Tokyo, New York, and Shanghai [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 675-685. |
[3] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[4] | Yao XIONG, Runqiu PAN, Gang XU, Limin JIAO, Kai LI. A comparison of spatial and temporal characteristics of urban expansion in India during 1990-2014 [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 271-282. |
[5] | Ming XU, Yuli SHI, Bin WANG. Reconstruction of high resolution monthly precipitation data of the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2018, 37(7): 923-932. |
[6] | Lin LIU, Wenjuan LIU, Weiwei LIAO, Hongjie YU, Chao JIANG, Rongping LIN, Jiakai JI, Zheng ZHANG. Comparison of random forest algorithm and space-time kernel density mapping for crime hotspot prediction [J]. PROGRESS IN GEOGRAPHY, 2018, 37(6): 761-771. |
[7] | Erfu DAI, Liang MA. Review on land change modeling approaches [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 152-162. |
[8] | Baofen CHEN, Yaomin ZHANG, Dong JIANG. Urban land expansion in Fuzhou City based on coupled cellular automata and agent-based models (CA-ABM) [J]. PROGRESS IN GEOGRAPHY, 2017, 36(5): 626-634. |
[9] | Min TAN, Kai LIU, Lin LIU, Yuanhui ZHU, Dashan WANG. Spatialization of population in the Pearl River Delta in 30 m grids using random forest model [J]. PROGRESS IN GEOGRAPHY, 2017, 36(10): 1304-1312. |
[10] | Haijun WANG, Chang XIA, Anqi ZHANG, Yu DENG. Scenario simulation and control of metropolitan outskirts urban growth based on constrained CA:A case study of Jiangxia District of Wuhan City [J]. PROGRESS IN GEOGRAPHY, 2016, 35(7): 793-805. |
[11] | Chaolin GU, Yue ZHANG, Wei ZHAI, Weihua GUAN, Qiang LI, Na ZHAO, Chen LIU. Progress in urban and regional quantitative research [J]. PROGRESS IN GEOGRAPHY, 2016, 35(12): 1433-1446. |
[12] | Limin JIAO, Xin TANG, Xiaoping LIU. Spatial linkage and urban expansion:An urban agglomeration perspective [J]. PROGRESS IN GEOGRAPHY, 2016, 35(10): 1177-1185. |
[13] | Cuiling LIU, Ying LONG. Urban expansion simulation and analysis in the Beijing-Tianjin-Hebei Region [J]. PROGRESS IN GEOGRAPHY, 2015, 34(2): 217-. |
[14] | ZHOU Shuli, TAO Haiyan, ZHUO Li. Vector-based multi-agent simulation of urban expansion:a case study in Panyu District in Guangzhou City [J]. PROGRESS IN GEOGRAPHY, 2014, 33(2): 202-210. |
[15] | Jiangfu LIAO, Lina TANG, Cuiping WANG, Tong XU. Measuring and calibrating extended neighborhood effect of urban cellular automata model based on particle swarm optimization [J]. PROGRESS IN GEOGRAPHY, 2014, 33(12): 1624-1633. |
|