PROGRESS IN GEOGRAPHY ›› 2015, Vol. 34 ›› Issue (4): 494-504.doi: 10.11820/dlkxjz.2015.04.011
• Special Column: Big Data and Smart City • Previous Articles Next Articles
Yong LIU1(), Shaoyue ZHANG1, Lin LIU1,2(
), Xianwei WANG1, Huabing HUANG1
Online:
2015-04-10
Published:
2015-04-10
Yong LIU, Shaoyue ZHANG, Lin LIU, Xianwei WANG, Huabing HUANG. Research on urban flood simulation: a review from the smart city perspective[J].PROGRESS IN GEOGRAPHY, 2015, 34(4): 494-504.
Tab 1
Comparison of representative urban flood simulation models"
模型名称/类型 | 地形划分单元 | 汇流算法 | 模型输入 | 模型输出 | 构建难易程度 | 计算效率 | 能否模拟积水过程 |
---|---|---|---|---|---|---|---|
SWMM/水文模型 ( | 子汇水区 | 非线性水库 | 降雨数据,DEM,土壤属性,土地利用,详细的管网数据 | 管道水位流速的时空演化,节点的积水体积变化 | 一般 | 快 | 否 |
二维水动力模型 ( | 无结构不规则网格 | 圣维南方程 | 降雨数据,DEM,土地利用,详细的管网数据 | 径流的时空演化过程 | 难 | 慢 | 能 |
RFSM/简化模型 ( | 基于地形划分的影响区域(impact zones) | 计算影响区域自身的淹没,多余的水量通过最低点流入相邻的影响区域 | DEM,影响区域最低点位置,入流总体积 | 最终淹没范围 | 一般 | 快 | 否 |
FCDC/简化模型 ( | 三角网格 | 搜索洪水连接点,低于水面高程的区域被淹没 | DEM,水面高程或者洪水体积,进入点位置 | 最终淹没范围 | 一般 | 快 | 否 |
LISFLOOD-FP/简化模型( | DEM网格 | 简化的圣维南方程 | 降雨数据,DEM,入流曲线,河道参数,时间步长 | 径流的时空演化过程 | 一般 | 较快 | 能 |
CA模型( | DEM网格 | 基于坡度和水力学方程计算元胞间的交换水量 | 降雨数据,DEM,时间步长 | 径流的时空演化过程 | 容易 | 较快 | 能 |
1 | 丛翔宇, 倪广恒, 惠士博, 等. 2006. 城市立交桥暴雨积水数值模拟[J]. 城市道桥与防洪,(2): 52-55, 152. |
[Cong X Y, Ni G H, Hui Z B, et al.2006. Simulation of storm waterlogging value of urban inter change bridges[J]. Urban Roads Bridges & Flood Control,(2): 52-55, 152.] | |
2 | 高铁军, 吴立新. 2011. 论城市管网智慧管理研究范畴与关键技术[J]. 地理与地理信息科学, 27(4): 19-23. |
[GaoT J, Wu L X.2011. On research domain and key technologies of city pipeline smart management[J]. Geography and Geo-Information Science, 27(4): 19-23.] | |
3 | 胡伟贤, 何文华, 黄国如, 等. 2010. 城市雨洪模拟技术研究进展[J]. 水科学进展, 21(1): 137-144. |
[Hu W X, He W H, Huang G R, et al.2010. Review of urban storm water simulation techniques[J]. Advances in Water Science, 21(1): 137-144.] | |
4 | 黄国如, 黄晶, 喻海军, 等. 2011. 基于GIS的城市雨洪模型SWMM二次开发研究[J]. 水电能源科学, 29(4): 43-45, 195. |
[Huang G R, Huang J, Yu H J, et al.2011. Secondary development of storm water management model SWMM based GIS[J]. Water Resources and Power, 29(4): 43-45,195.] | |
5 | 李德仁, 姚远, 邵振峰. 2014. 智慧城市中的大数据[J]. 武汉大学学报: 信息科学版, (3): 631-640. |
[Li D R, Yao Y, Shao Z F.2014. Big data in smart city[J]. Geomatics and Information Science of Wuhan University, (3): 631-640.] | |
6 | 李娜, 仇劲卫, 程晓陶, 等. 2002. 天津市城区暴雨沥涝仿真模拟系统的研究[J]. 自然灾害学报, 11(2): 112-118. |
[Li N, Qiu J W, Cheng X T, et al.2002. Study on simulation system of rainstorm waterlogging in Tianjin City[J]. Journal of Natural Disasters, 11(2): 112-118. ] | |
7 | 廖永丰, 聂承静, 杨林生, 等. 2012. 洪涝灾害风险监测预警评估综述[J]. 地理科学进展, 31(3): 361-367. |
[Liao Y F, Nie C J, Yang L S, et al.2012. An overview of the risk assessment of flood disaster[J]. Progress in Geography, 31(3): 361-367.] | |
8 | 刘畅, 周玉文, 赵见. 2014.下凹式立交桥内涝模型构建方法及原因分析[J]. 河北工业科技, 31(5): 389-394. |
[Liu C, Zhou Y W, Zhao J.2014. Modeling method and reason analysis of urban flooding in concave-down overpass area[J]. Hebei Journal of Industrial Science and Technology, 31(5): 389-394.] | |
9 | 刘俊, 郭亮辉, 张建涛, 等. 2006. 基于SWMM模拟上海市区排水及地面淹水过程[J]. 中国给水排水, 22(2): 64-70. |
[Liu J, Guo L H, Zhang J T, et al.2006. Study on simulation of drainage and flooding in urban areas of Shanghai based on improved SWMM[J]. China Water & Wastewater, 22(2): 64-70.] | |
10 | 鲁朝阳, 车伍, 唐磊, 等. 2013. 隧道在城市洪涝及合流制溢流控制中的应用[J]. 中国给水排水, 29(24): 35-40. |
[Lu C Y, Che W, Tang L, et al.Application of stormwater tunnel to control of urban flooding and combined sewer overflow[J]. China Water & Wastewater, 29(24): 35-40.] | |
11 | 路玲玲, 吴晓明, 任杰. 2008. 城市地下管网信息管理问题研究[J]. 地域研究与开发, 27(2): 47-50. |
[Lu L L, Wu X M, Ren J.Research of the urban underground pipeline information management[J]. Areal Research and Development, 27(2): 47-50.] | |
12 | 孟超, 杨昆. 2012. SWMM模型与GIS集成技术研究[J]. 安徽农业科学, 40(10): 6286-6287, 6298. |
[Meng C, Yang K.2012. Research on integration of SWMM model and GIS[J]. Journal of Anhui Agriculture Science, 40(10): 6286-6287, 6298.] | |
13 | 牛文元. 2014. 智慧城市是新型城镇化的动力标志[J]. 中国科学院院刊, 29(1): 34-41. |
[Niu W Y.2014. Smart cities: convergence of urbanization and informatization[J]. Bulletin of Chinese Academy of Sciences, 29(1): 34-41.] | |
14 | 仇劲卫, 李娜, 程晓陶, 等. 2000. 天津市城区暴雨沥涝仿真模拟系统[J]. 水利学报, (11): 34-42. |
[Qiu J W, Li N, Cheng X T, et al.2000. The simulation system for heavy rainfall in Tianjin City[J]. Journal of Hydraulic Engineering, (11): 34-42.] | |
15 | 史蕊. 2010. 基于GIS和SWMM的城市洪水模拟与分析[D]. 昆明: 昆明理工大学. |
[Shi R.2010. Urban flood simulation and analysis based on GIS and SWMM[D]. Kunming, China: Kunming University of Science and Technology.] | |
16 | 孙绍骋. 2002. 遥感技术在洪涝灾害防治体系建设中的应用[J]. 地理科学进展, 21(3): 282-288. |
[Sun S P.2002. Application of remote sensing in flooding alleviation system in China[J]. Progress in Geography, 21(3): 282-288.] | |
17 | 王林, 秦其明, 李吉芝, 等. 2004. 基于GIS的城市内涝灾害分析模型研究[J]. 测绘科学, 29(3): 48-51. |
[Wang L, Qin Q M, Li J Z, et al.2004. Study on the disaster analysis model of water logging in city based on GIS[J]. Science of Surveying and Mapping, 29(3): 48-51.] | |
18 | 夏军, 左其亭. 2006. 国际水文科学研究的新进展[J]. 地球科学进展, 21(3): 256-261. |
[Xia J, Zuo Q T.2006. Advances in international hydrological science research[J]. Advances in Earth Science, 21(3): 256-261.] | |
19 | 解以扬, 李大鸣, 李培彦, 等. 2005. 城市暴雨内涝数学模型的研究与应用[J]. 水科学进展, 16(3): 384-390. |
[Xie Y Y, Li D M, Li P Y, et al.2005. Research and application of the mathematical model for urban rainstorm water logging[J]. Advances in Water Science, 16(3): 384-390.] | |
20 | 徐宗学. 2010. 水文模型: 回顾与展望[J]. 北京师范大学学报: 自然科学版, 46(3): 278-289. |
[Xu Z X.2010. Hydrological models: past, present and future[J]. Journal of Beijing Normal University: Natural Science, 46(3): 278-289.] | |
21 | 徐宗学, 程磊. 2010. 分布式水文模型研究与应用进展[J]. 水利学报, 41(9): 1009-1017. |
[Xu Z X, Cheng L.2010. Progress on studies and applications of the distributed hydrological models[J]. Journal of Hydraulic Engineering, 41(9): 1009-1017.] | |
22 | 张金存, 芮孝芳. 2007. 分布式水文模型构建理论与方法述评[J]. 水科学进展, 18(2): 286-292. |
[Zhang J C, Rui X F.2007. Discussin of theory and methods for building a distributed hydrologic model[J]. Advances in Water Science, 18(2): 286-292.] | |
23 | 张书亮, 曾巧玲, 姜永发, 等. 2004. GIS支持下的城市暴雨积水计算的可视化[J]. 水利学报, 12(12): 92-98. |
[Zhang S L, Zeng Q L, Jiang Y F, et al.2004. GIS supported visualized calculation of urban retaining water due to rainstorm[J]. Journal of Hydraulic Engineering, 12(12): 92-98.] | |
24 | 赵冬泉, 陈吉宁, 佟庆远, 等. 2008. 子汇水区的划分对SWMM模拟结果的影响研究[J]. 环境保护, 394(5): 56-59. |
[Zhao D Q, Chen J N, Tong Q Y, et al.Research on the impact of subcatchment division on simulation result of SWMM[J]. Environmental Protection, 394(5): 56-59.] | |
25 | 郑姗姗, 万庆, 贾明元. 2014. 基于STARMA模型的城市暴雨积水点积水短时预测[J]. 地理科学进展, 33(7): 949-957. |
[Zheng S S, Wan Q, Jia M Y.2014. Short-term forecasting of waterlogging at urban storm-waterlogging monitoring sites based on STARMA model[J]. Process in Geography, 33(7): 949-957.] | |
26 | 朱冬冬, 周念清, 江思珉. 2011. 城市雨洪径流模型研究概述[J]. 水资源与水工程学报, 22(3): 132-137. |
[Zhu D D, Zhou N Q, Jiang S M.2011. Research overview of runoff model for urban rainwater[J]. Journal of Water Resources & Water Engineering, 22(3): 132-137.] | |
27 | 中华人民共和国住房和城乡建设部. 城市排水防涝设施普查数据采集与管理技术导则(试行)的通知[EB/OL]. 2013-06-08[2015-04-09]. . |
[Ministry of Housing and Urban-Rural Development of the People's Republic of China (MOHURD). Technical guidance for city drainage facilities census data collection and management (Trail)[EB/OL]. 2013-06-08[2015-04-09]. .] | |
28 | Aronica G T, Lanza L G.2005. Drainage efficiency in urban areas: a case study[J]. Hydrological Processes, 19(5): 1105-1119. |
29 | Bates P D, De Roo A.2000. A simple raster-based model for flood inundation simulation[J]. Journal of hydrology, 236(1): 54-77. |
30 | Bates P D, Horritt M S, Aronica G, et al.2004. Bayesian updating of flood inundation likelihoods conditioned on flood extent data[J]. Hydrological Processes, 18(17): 3347-3370. |
31 | Bates P D, Horritt M S, Fewtrell T J.2010. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling[J]. Journal of Hydrology, 387(1-2): 33-45. |
32 | Bates P D, Wilson M D.2004. Assimilation of remote observations of surface water into large-scale hydraulic models[C]//AGU Fall Meeting Abstracts. San Francisco, CA: American Geophysical Union: 6. |
33 | Beven K J.2001. Dalton medal lecture: how far can we go in distributed hydrological modelling[J]. Hydrology and Earth System Sciences, 5(1): 1-12. |
34 | Beven K J.2002. Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system[J]. Hydrological Processes, 16(2): 189-206. |
35 | Chen A S, Evans B, Djordjević S, et al.2012. Multi-layered coarse grid modelling in 2D urban flood simulations[J]. Journal of Hydrology, 470(23): 1-11. |
36 | Chen J, Hill A A, Urbano L D.2009. A GIS-based model for urban flood inundation[J]. Journal of Hydrology, 373(1): 184-192. |
37 | Coulthard T J, Macklin M G, Kirkby M J.2002. A cellular model of Holocene upland river basin and alluvial fan evolution[J]. Earth Surface Processes and Landforms, 27(3): 269-288. |
38 | D'Ambrosio D, Di Gregorio S, Gabriele S, et al.2001. A Cellular automata model for soil erosion by water[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(1): 33-39. |
39 | Di Gregorio S, Serra R.1999. An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata[J]. Future Generation Computer Systems, 16: 259-271. |
40 | Estupina-Borrell V, Dartus D, Ababou R.2006. Flash flood modeling with the MARINE hydrological distributed model[J]. Hydrology and Earth System Sciences Discussions, 3(6): 3397-3438. |
41 | Fewtrell T J, Bates P D, Horritt M, et al.2008. Evaluating the effect of scale in flood inundation modelling in urban environments[J]. Hydrological Processes, 22(26): 5107-5118. |
42 | Fewtrell T J, Duncan A, Sampson C C, et al.2011. Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data[J]. Physics and Chemistry of the Earth, Parts A/B/C, 36(7-8): 281-291. |
43 | Ghimire B, Chen A S, Guidolin M, et al.2013. Formulation of a fast 2D urban pluvial flood model using a cellular automata approach[J]. Journal of Hydroinformatics, 15(3): 676-686. |
44 | Gironás J, Roesner L A, Rossman L A, et al.2010. A new applications manual for the Storm Water Management Model (SWMM)[J]. Environmental Modelling & Software, 25(6): 813-814. |
45 | Gjertsen U, Šálek M, Michelson D B.2004. Gauge adjustment of radar-based precipitation estimates in Europe[C]//Proceedings 3rd European conference on radar in meteorology and hydrology. Deutscher Wetterdienst, Institut für Physik der Atmosphäre: 7-11. |
46 | Hapuarachchi H A P, Wang Q J, Pagano T C.2011. A review of advances in flash flood forecasting[J]. Hydrological Processes, 25(18): 2771-2784. |
47 | Hirsch H.1990. Numerical computation of internal and external flows[J]. Computational Methods for Inviscid and Viscous Flows, 2: 536-556. |
48 | Horritt M S, Bates P D.2001. Predicting floodplain inundation: raster-based modelling versus the finite-element approach[J]. Hydrological Processes, 15(5): 825-842. |
49 | Horritt M S, Bates P D.2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation[J]. Journal of Hydrology, 268(1-4): 87-99. |
50 | Hunter N M, Bates P D, Horritt M S, et al.2005. Utility of different data types for calibrating flood inundation models within a GLUE framework[J]. Hydrology Earth System Sciences and Discussions, 9(4): 412-430. |
51 | Hunter N M, Bates P D, Horritt M S, et al.2007. Simple spatially-distributed models for predicting flood inundation: a review[J]. Geomorphology, 90(3-4): 208-225. |
52 | Hunter N M, Horritt M S, Bates P D, et al.2005. An adaptive time step solution for raster-based storage cell modelling of floodplain inundation[J]. Advances in Water Resources, 28(9): 975-991. |
53 | Krupka M.2009. A rapid inundation flood cell model for flood risk analysis[D]. Edinburgh, UK: Heriot-Watt University. |
54 | Kubota T, Shige S, Hashizume H, et al.2007. Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: production and validation[J]. Geoscience and Remote Sensing, 45(7): 2259-2275. |
55 | Lamb R, Crossley M, Waller S.2009. A fast two-dimensional floodplain inundation model[J]. Proceedings of the ICE - Water Management, 162(6): 363-370. |
56 | LeFavour G, Alsdorf D.2005. Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model[J]. Geophysical Research Letters, 32(17): 195-221. |
57 | Lhomme J, Bouvier C, Perrin J.2004. Applying a GIS-based geomorphological routing model in urban catchments[J]. Journal of Hydrology, 299(3): 203-216. |
58 | Lhomme J, Sayers P B, Gouldby B P, et al.2008. Recent development and application of a rapid flood spreading method[C]//Samuels P, Huntington S, Allsop W, et al. Flood risk management: research and practice. Oxford, UK: Keble College: 15-24. |
59 | Liu L, Liu Y, Wang X, et al.2015. Developing an effective 2D urban flood inundation model for city emergency management based on cellular automata[J]. Natural Hazards and Earth System Sciences, 15: 381-391. |
60 | Marks K, Bates P.2000. Integration of high-resolution topographic data with floodplain flow models[J]. Hydrological Processes, 14(11-12): 2109-2122. |
61 | Mason D C, Giustarini L, Garcia-Pintado J, et al.2014. Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering[J]. International Journal of Applied Earth Observation and Geoinformation, 28(5): 150-159. |
62 | Meis T, Marcowitz U.1981. Numerical solution of partial differential equations[M]. New York: Springer-Verlag: 1-10. |
63 | Mignot E, Paquier A, Haider S.2006. Modeling floods in a dense urban area using 2D shallow water equations[J]. Journal of Hydrology, 327(1-2): 186-199. |
64 | Neal J C, Bates P D, Fewtrell T J, et al.2009. Distributed whole city water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model simulations[J]. Journal of Hydrology, 368(1-4): 42-55. |
65 | Papadakis C, Preul H C.1972. University of Cincinnati urban runoff model[J]. Journal of the Hydraulics Division, 98(10): 1789-1804. |
66 | Parsons J A, Fonstad M A.2007. A cellular automata model of surface water flow[J]. Hydrological Processes, 21(16): 2189-2195. |
67 | Rezacova D, Sokol Z, Pesice P.2007. A radar-based verification of precipitation forecast for local convective storms[J]. Atmospheric Research, 83(2): 211-224. |
68 | Rossman L A.2010. Storm water management model user's manual[M]. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency: 1-285. |
69 | Sampson C C, Fewtrell T J, Duncan A, et al.2012. Use of terrestrial laser scanning data to drive decimetric resolution urban inundation models[J]. Advances in Water Resources, 41(2): 1-17. |
70 | Sanders B F, Schubert J E, Detwiler R L.2010. ParBreZo: aparallel, unstructured grid, Godunov-type, shallow-water code for high-resolution flood inundation modeling at the regional scale[J]. Advances in Water Resources, 33(12): 1456-1467. |
71 | Schubert J E, Sanders B F.2012. Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency[J]. Advances in Water Resources, 41(2): 49-64. |
72 | Sinclair S, Pegram G.2005. Combining radar and rain gauge rainfall estimates using conditional merging[J]. Atmospheric Science Letters, 6(1): 19-22. |
73 | Smith L C.2002. Emerging applications of interferometric synthetic aperture radar (InSAR) in geomorphology and hydrology[J]. Annals of the Association of American Geographers, 92(3): 385-398. |
74 | Smith M B, Seo D, Koren V I, et al.2004. The distributed model intercomparison project (DMIP): motivation and experiment design[J]. Journal of Hydrology, 298(1): 4-26. |
75 | Terstriep M L, Stall J B.1974. The Illinois urban drainage area simulator, ILLUDAS[M]. Urbana, IL: Illinois State Water Survey: 1-7. |
76 | Thomas R, Nicholas A P.2002. Simulation of braided river flow using a new cellular routing scheme[J]. Geomorphology, 43(3): 179-195. |
77 | Wang J P, Liang Q.2011. Testing a new adaptive grid-based shallow flow model for different types of flood simulations[J]. Journal of Flood Risk Management, 4(2): 96-103. |
78 | Wilson M D, Atkinson P M.2005. The use of elevation data in flood inundation modelling: a comparison of ERS interferometric SAR and combined contour and differential GPS data[J]. International Journal of River Basin Management, 3(1): 3-20. |
79 | Yu D.2010. Parallelization of a two-dimensional flood inundation model based on domain decomposition[J]. Environmental Modelling & Software, 25(8): 935-945. |
80 | Yu D, Lane S N.2006. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: development of a sub-grid-scale treatment[J]. Hydrological Processes, 20(7): 1567-1583. |
81 | Zanobetti D, Lorgeré H, Preissman A, et al.1970. Mekong delta mathematical model program construction[J]. Journal of the Waterways, Harbors and Coastal Engineering Division, 96(2): 181-199. |
82 | Zhang S, Pan B.2014. An urban storm-inundation simulation method based on GIS[J]. Journal of Hydrology, 517(5): 260-268. |
83 | Zhang S, Wang T, Zhao B.2014. Calculation and visualization of flood inundation based on a topographic triangle network[J]. Journal of Hydrology, 509(4): 406-415. |
84 | Zienkiewicz O C, Cheung Y K.1965. Finite elements in the solution of field problems[J]. The Engineer, 202: 507-510. |
85 | Zoppou C.2001. Review of urban storm water models[J]. Environmental Modelling & Software, 16(3): 195-231. |
[1] | ZHAO Liyuan, WEI Jialing. Impact of urban development on the risk of flooding: A case study of Wuhan City, China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(11): 1898-1908. |
[2] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[3] | Yang CAO, Feng ZHEN. The overall architecture of sustainable urban spatial development model based on the construction of smart cities [J]. PROGRESS IN GEOGRAPHY, 2015, 34(4): 430-437. |
[4] | Fenglong WANG, Donggen WANG. Measures of subjective well-being: a review [J]. PROGRESS IN GEOGRAPHY, 2015, 34(4): 482-493. |
[5] | Qingquan LI, Baoding ZHOU. Smartphone-based individual indoor spatiotemporal behavior analysis [J]. PROGRESS IN GEOGRAPHY, 2015, 34(4): 457-465. |
[6] | Mingfeng WANG, Chengcheng GU. Building a smart city: a spatial analysis and review of WLAN hotspots in metropolitan Shanghai [J]. PROGRESS IN GEOGRAPHY, 2015, 34(4): 438-447. |
[7] | Yong ZHAO, Hao ZHANG, Yuling WU, Yang LIU. Public service demand of residents for smart city construction: Shijiazhuang City in Hebei Province as an example [J]. PROGRESS IN GEOGRAPHY, 2015, 34(4): 473-481. |
|