PROGRESS IN GEOGRAPHY ›› 2014, Vol. 33 ›› Issue (11): 1556-1565.doi: 10.11820/dlkxjz.2014.09.012
• Orginal Article • Previous Articles Next Articles
Yushan ZUO1,2(), Wei WANG1,2(
), Yanli HAO1,2, Hong LIU1,2
Online:
2014-11-25
Published:
2014-09-30
CLC Number:
Yushan ZUO, Wei WANG, Yanli HAO, Hong LIU. Land cover classification based on MODIS images: taking the Beijing-Tianjin-Hebei region as an example[J].PROGRESS IN GEOGRAPHY, 2014, 33(11): 1556-1565.
Tab. 1
Definition of land cover types, number of sampling area and samples"
土地覆被类型 | 含义 | 样区数 | 样本数 |
---|---|---|---|
一年一熟旱地 | 指一年收获一季,种植旱生农作物的耕地 | 26 | 1522 |
一年两熟旱地 | 指一年收获二季,种植旱生农作物的耕地 | 22 | 1269 |
一年一熟水田 | 指一年收获一季,用于种植水稻等水生农作物的耕地 | 28 | 1116 |
园地 | 人工种植的经济林地 | 25 | 1011 |
林地 | 指生长乔木、灌丛为主的土地 | 23 | 1558 |
草地 | 指生长草本植物为主的土地 | 20 | 1379 |
建筑用地 | 指居民点、交通、工矿用地 | 20 | 1550 |
水体 | 指陆地水域、海涂(含盐田)等用地 | 35 | 1433 |
其他土地 | 指上述地类以外的其他类型土地,主要包括裸地和休耕地 | 26 | 1289 |
合计 | 12127 |
Tab. 2
Classification feature separability"
类对 | 分类特征组合 | |||||||
---|---|---|---|---|---|---|---|---|
方案一 | 方案二 | 方案三 | ||||||
| | | | | | |||
一年一熟旱地_一年一熟水田 | 1.2935 | 1.4901 | 1.9907 | 1.9999 | 1.9997 | 2.0000 | ||
一年一熟旱地_园地 | 1.8468 | 1.9921 | 1.9921 | 2.0000 | 1.9998 | 2.0000 | ||
一年一熟旱地_草地 | 1.7404 | 1.9577 | 1.9588 | 1.9996 | 1.9947 | 2.0000 | ||
一年一熟旱地_其他 | 1.8405 | 1.9401 | 1.9704 | 1.9989 | 1.9978 | 2.0000 | ||
一年一熟水田_草地 | 1.8810 | 1.9811 | 1.9980 | 1.9999 | 1.9999 | 2.0000 | ||
园地_其他 | 1.8783 | 1.9734 | 1.9748 | 1.9989 | 1.9921 | 2.0000 | ||
林地_草地 | 1.7494 | 1.9390 | 1.9953 | 1.9999 | 1.9994 | 2.0000 | ||
草地_其他 | 1.8119 | 1.9941 | 1.9658 | 1.9999 | 1.9880 | 2.0000 | ||
建筑用地_水体(含盐田) | 1.8176 | 1.9993 | 1.9979 | 1.9999 | 1.9999 | 2.0000 | ||
水体(含盐田)_其他 | 1.8593 | 1.9999 | 1.9999 | 2.0000 | 2.0000 | 2.0000 |
Tab. 3
Classification accuracy of different classification feature combinations"
类别 | 不同分类特征组合方案下的分类精度/% | |||||||
---|---|---|---|---|---|---|---|---|
方案一 | 方案二 | 方案三 | ||||||
制图精度 | 用户精度 | 制图精度 | 用户精度 | 制图精度 | 用户精度 | |||
一年一熟旱地 | 87.22 | 87.76 | 94.23 | 94.81 | 93.81 | 90.10 | ||
一年两熟旱地 | 85.06 | 92.82 | 87.34 | 96.37 | 94.94 | 96.65 | ||
一年一熟水田 | 90.33 | 73.28 | 96.98 | 76.61 | 91.24 | 75.88 | ||
园地 | 98.08 | 88.99 | 92.01 | 93.51 | 95.53 | 85.43 | ||
林地 | 77.60 | 94.27 | 95.68 | 92.06 | 94.89 | 95.45 | ||
草地 | 77.13 | 76.97 | 76.30 | 90.62 | 81.70 | 97.28 | ||
建筑用地 | 87.24 | 95.64 | 86.82 | 93.47 | 88.28 | 96.57 | ||
水体(含盐田) | 87.79 | 96.86 | 88.74 | 98.49 | 88.33 | 99.69 | ||
其他土地 | 93.82 | 75.79 | 94.01 | 76.76 | 96.25 | 82.64 | ||
Kappa系数 | 84.94 | 88.66 | 90.20 | |||||
总体分类精度 | 86.70 | 89.98 | 91.34 |
[1] | 陈云, 戴锦芳, 李俊杰. 2008. 基于影像多特征的CART决策树分类方法及其应用. 地理与地理信息科学, 24(2): 33-36. |
Chen Y, Dai J F, Li J J.2008. CART-based decision tree classifier using multi-feature of image and its application. Geography and Geo-Information Science, 24(2): 33-36. | |
[2] | 金卫斌, 熊勤学, 薛莲. 2011. 基于MODIS-EVI时序数据的江汉平原四湖地区土地覆被动态分析. 湖北农业科学, 50(11): 2220-2224. |
Jin W B, Xiong Q X, Xue L.2011. Dynamic analysis of the land cover in Four-Lake area in Jianghan Plain based on MODIS-EVI time-series data. Hubei Agricultural Sciences, 50(11): 2220-2224. | |
[3] | 孔凡明, 蒋卫国, 李京, 等. 2013. 基于MODIS的2011年泰国洪涝受灾信息提取与分析. 灾害学, 28(2): 95-99. |
Kong F M, Jiang W G, Li J, et al.2013. Extraction and analysis of Thailand flood affected region in 2011 based on MODIS data. Journal of Catastrophology, 28(2): 95-99. | |
[4] | 李红军, 郑力, 雷玉平. 2007. 基于EOS/MODIS数据的NDVI与EVI比较研究. 地理科学进展, 26(1): 26-32. |
Li H J, Zheng L, Lei Y P.2007. Comparison of NDVI and EVI based on EOS/MODIS data. Progress Progress in Geography, 26(1): 26-32. | |
[5] | 李淼.2007. 基于支持向量机的MODIS数据土地覆被分类研究[D]. 阜新: 辽宁工程大学. |
Li M.2007. Land cover classification with SVM applied to MODIS imagery[D]. Fuxin, China: Liaoning Technical University. | |
[6] | 李文梅, 覃志豪, 杨强. 2010. MODIS NDVI 与MODIS EVI 的比较分析. 遥感信息, (6): 73-78. |
Li W M, Tan Z H, Yang Q.2010. Comparison and analysis of MODIS NDVI and MODIS EVI. Remote Sensing Information, (6): 73-78. | |
[7] | 刘爱霞, 王静, 吕春艳. 2006. 基于MODIS数据的北京西北部地区土地覆被分类研究. 地理科学进展, 25(2): 96-102. |
Liu A X, Wang J, Lv C Y.2006. Land cover classification based on MODIS data in area to the north-west of Beijing. Progress in Geography, 25(2): 96-102. | |
[8] | 刘建光, 李红, 孙丹峰, 等. 2010. MODIS土地利用/土地覆被多时相多光谱决策树分类. 农业工程学报, 26(10): 312-318. |
Liu J G, Li H, Sun D F, et al.2010. Land use/cover decision tree classification fusing multi-temporal and multi-spectral of MODIS. Transactions of the CSAE, 26(10): 312-318. | |
[9] | 刘纪远.1996. 中国资源遥感宏观调查与动态研究. 北京: 中国科学技术出版社. |
LIU J Y.1996. Zhongguo ziyuan yaogan hongguan diaocha yu dongtai yanjiu. Beijing, China:China Science and Technology Press . | |
[10] | 刘勇洪, 牛铮. 2004. 基于MODIS遥感数据的宏观土地覆被特征分类方法与精度分析研究. 遥感技术与应用, 19(4): 217-224. |
Liu Y H, Niu Z.2004. Regional land cover image classification and accuracy evaluation using MODIS data. Remote Sensing Technology and Application, 19(4): 217-224. | |
[11] | 刘勇洪, 牛铮, 徐永明, 等. 2006. 基于MODIS数据设计的中国土地覆被分类系统与应用研究. 农业工程学报, 22(5): 99-105. |
Liu Y H, Niu Z, Xu Y M, et al.2006. Design of land cover classification system for China and its application research based on MODIS data. Transactions of the CSAE, 22(5): 99-105. | |
[12] | 马娜, 胡云峰, 庄大方, 等. 2010. 基于最佳波段指数和JM距离可分性的高光谱数据最佳波段组合选取研究. 遥感技术与应用, 25(3): 358-365. |
Ma N, Hu Y F, Zhuang D F, et al.2010. Determination on the optimum band combination of HJ-1A hyperspectral data in the case region of Dongguan based on optimum index factor and J-M distance. Remote Sensing Technology and Application, 25(3): 358-365. | |
[13] | 马少平, 朱小燕. 2004. 人工智能. 北京: 清华大学出版社. |
Ma S P, Zhu X Y.2004. Rengong zhineng. Beijing, China: Tsinghua University Press. | |
[14] | 那晓东, 张树清, 李晓峰, 等. 2007. MODIS NDVI时间序列在三江平原湿地植被信息提取中的应用. 湿地科学, 5(3): 227-236. |
Na X D, Zhang S Q, Li X F, et al.2007. Application of MODS NDVI time series to extracting wetland vegetation information in the Sanjiang Plain. Wetland Science, 5(3): 227-236. | |
[15] | 申文明, 王文杰, 罗江海, 等. 2007. 基于决策树分类技术的遥感影像分类方法研究. 遥感技术与应用, 22(3): 333-338. |
Shen W M, Wang W J, Luo J H, et al.2007. Classification methods of remote sensing image based on decision tree technologies. Remote Sensing Technology and Application, 22(3): 333-338. | |
[16] | 王大鹏, 王周龙, 李德一, 等. 2007. 综合非光谱信息的荒漠化土地CART分类. 遥感学报, 11(4): 487-492. |
Wang D P, Wang Z L, Li D Y, et al.2007. The extraction of desertification information using CART under knowledge guide. Journal of Remote Sensing, 11(4): 487-492. | |
[17] | 魏强.2009. 基于MODIS和TM数据的京津冀地区土地覆被分类方法研究[D]. 石家庄: 河北师范大学 |
Wei Q.2009. Research on land cover classification method of Beijing-Tianjin-Heibei region using MODIS and TM data[D]. Shijiazhuang, China: Hebei Normal University. | |
[18] | 徐涵秋.2005. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究. 遥感学报, 9(5): 589-595. |
Xu H Q.2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9(5): 589-595. | |
[19] | 延昊.2002. 中国土地覆被变化与环境影响遥感研究[D]. 北京: 中国科学院遥感应用研究所. |
Yan H.2002. Remote sensing study of land cover change and its environmental in China[D]. Beijing, China: Institute of Remote Sensing Applications, CAS. | |
[20] | 岳瑞红.2010. 基于MODIS数据的蒙古高原土地覆被分类研究[D]. 呼和浩特: 内蒙古师范大学. |
Yue R H.2010. Research on land cover classification in Mongolian Plateau based on MODIS data[D]. Hohhot, China: Inner Mongolia Normal University. | |
[21] | 张会, 闫金凤. 2013. 基于MODIS影像多特征的CART决策树分类. 地理空间信息, 11(2): 111-113. |
Zhang H, Yan J F.2013. CART decision tree classifier based on multi-feature of MODIS data. Geospatial Information, 11(2): 111-113. | |
[22] | 张楠楠, 王文, 王胤. 2012. 鄱阳湖面积的卫星遥感估计及其与水位关系分析. 遥感技术与应用, 27(6): 947-953. |
Zhang N N, Wang W, Wang Y.2012. Estimate the area of the Poyang Lake using statellite remote sensing data and analyze its relationship with water level. Remote Sensing Technology and Application, 27(6): 947-953. | |
[23] | 赵萍, 傅云飞, 郑刘根, 等. 2005. 基于分类回归树分析的遥感影像土地利用/覆被分类研究. 遥感学报, 9(6): 708-716. |
Zhao P, Fu Y F, Zheng L G, et al.2005. Cart-based land use/cover classification of remote sensing images. Journal of Remote Sensing, 9(6): 708-716. | |
[24] | 赵英时.2001. 美国中西部沙山地区环境变化的遥感研究. 地理研究, 20(2): 213-219. |
Zhao Y S.2001. A study on environmental change analysis in Sand Hill of Nebraska using remote sensing. Geographical Research, 20(2): 213-219. | |
[25] | 赵英时.2003. 遥感应用分析原理与方法. 北京: 科学出版社. |
Zhao Y S.2003. Yaogan yingyong fenxi yuanli yu fangfa. Beijing, China: Science Press. | |
[26] | Chen Y, Huang C, Ticehurst C, et al.2013. An evaluation of MODIs daily and 8-day composite products for floodplain and wetland inundation mapping. Wetlands, 33(5): 823-835. |
[27] | DeFries R S, Hansen M, Towsend J G R, et al.1998. Global land coverclassification at 8 km spatial resolution: the use of training data from landsat imagery in decision tree classifies. International Journal of Remote Sensing, 19(6): 3141-3168. |
[28] | Friedl M A, McIver D K, Hodges J C F.2002. Global land cover mapping from MODIS: algorithms and early results. Remote Sensing of Environment, 83: 287-302. |
[29] | Gopal S, Woodcock C E, Strahler A H.1999. Fuzzy neural network classification of global land cover from a 1°AVHRR data set. Remote Sensing of Environment, 67(2): 230-243. |
[30] | Julien Y, Sobrino J A, Verhoef W.2006. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sensing of Environment, 103(1): 43-55. |
[31] | Mackin K J, Nunohiro E, Ohshiro M, et al.2006. Land cover classification from MODIS satellite data using probabilisti-cally optimal ensemble of artificial neural networks. Lecture Notes in Computer Science, 4253: 820-826. |
[32] | Muchoney D, Borak J.2000. Application of the MODIS global supervised classification refel to vegetation and land cover mapping of central America. International Journal of Remote Sensing, 21: 1115-1138. |
[33] | Price J C.2003. Compare MODIS and ETM+ data for regional and global land classification. Remote Sensing of Environment, 86(4): 491-499. |
[34] | Roerink G J, Menen M, Verhoef W.2000. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. International Journal of Remote Sensing, 21(9): 1911-1917. |
[35] | Vogelmann J E, Sohl T L, Campbell P V.1998. Regional characterization of land cover using multiple sources of data. Photogrammetric Engineering and Remote Sensing, 64(1): 45-57. |
|