PROGRESS IN GEOGRAPHY ›› 2014, Vol. 33 ›› Issue (7): 958-968.doi: 10.11820/dlkxjz.2014.07.011
• Orginal Article • Previous Articles Next Articles
Online:
2014-07-25
Published:
2014-07-25
CLC Number:
Haijun ZHANG. Spatial analysis of fire-influencing factors in Henan Province[J].PROGRESS IN GEOGRAPHY, 2014, 33(7): 958-968.
Tab.1
Statistics of coefficients estimates from the LGR and LGWR models"
解释 变量 | LGR模型 | LGWR模型(高斯核,带宽为279个最近邻点) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | SE | C-1SE | C+1SE | Sig. | Min | LwrQ | Me | UprQ | Max | ||
截距 | -8.472 | 1.074 | -9.546 | -7.398 | 0.000 | -11.512 | -10.322 | -9.034 | -7.112 | -5.806 | |
Al | -0.682 | 1.254 | -1.936 | 0.572 | 0.586 | -1.075 | |||||
Sl | -4.819 | 1.844 | -6.664 | -2.975 | 0.009 | -13.513 | -6.667 | -3.636 | -2.654 | -1.498 | |
Dv | -0.972 | 0.614 | -1.586 | -0.359 | 0.113 | -2.811 | -1.934 | -1.127 | -0.357 | 0.228 | |
Dp | 0.768 | 0.464 | 0.304 | 1.232 | 0.098 | 0.689 | |||||
LST | 7.945 | 0.906 | 7.040 | 8.851 | 0.000 | 5.226 | 6.577 | 8.355 | 9.961 | 11.347 | |
NDVI | 4.262 | 0.969 | 3.293 | 5.231 | 0.000 | 2.282 | 3.206 | 4.280 | 5.523 | 6.304 | |
GVMI | -1.621 | 0.589 | -2.210 | -1.032 | 0.671 | -6.769 | -4.141 | -2.920 | -1.028 | -0.001 |
[1] | 邓欧, 李亦秋, 冯仲科, 等. 2012. 基于空间Logistic的黑龙江省林火风险模型与火险区划. 农业工程学报, 28(8): 200-205. |
Deng O, Li Y Q, Feng Z K, et al.2012. Model and zoning of forest fire risk in Heilongjiang Province based on spatial Logistic. Transactions of the Chinese Society of Agricultural Engineering, 28(8): 200-205. | |
[2] | 郭其乐, 陈怀亮, 邹春辉, 等. 2009. 河南省近年来遥感监测的森林火灾时空分布规律分析. 气象与环境科学, 32(4): 29-32. |
Guo Q L, Chen H L, Zou C H, et al.2009. Analysis of the laws of spatial and temporal distribution of remote sensing monitoring forest fires of Henan Province in recent years. Meteorological and Environmental Sciences, 32(4): 29-32. | |
[3] | 景国勋, 王卫敏, 温宏民. 2007. 基于BP神经网络的河南省火灾风险评价. 中国安全科学学报, 17(8): 16-19. |
Jing G X, Wang W M, Wen H M.2007. Risk assessment of fire accidents in Henan Province of China based on BP neural network. China Safety Science Journal, 17(8): 16-19. | |
[4] | 严小兵.2013. 中国省域犯罪率影响因素的空间非平稳性分析. 地理科学进展, 32(7): 1159-1166. |
Yan X B.2013. Spatial non-stationarity of the factors affecting crime rate at province scale in China. Progress in Geography, 32(7): 1159-1166. | |
[5] | 张海军, 戚鹏程. 2012. 基于频率比和逻辑回归模型的东北地区火险制图研究. 地理与地理信息科学, 28(5): 35-38,42. |
Zhang H J, Qi P C.2012. Mapping fire occurrence susceptibility in Northeast China: comparison of frequency ratio and binary logistic regression. Geography and Geo-information Science, 28(5): 35-38, 42. | |
[6] | Bisquert M, Caselles E, Sánchez J M, et al.2012. Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data. International Journal of Wildland Fire, 21(8): 1025-1029. |
[7] | Boschetti L, Roy D P, Justice C O, et al.2010. Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product. International Journal of Wildland Fire, 19(6): 705-709. |
[8] | Ceccato P, Gobron N, Flasse S, et al.2002. Designing a spectral index to estimate vegetation water content from remote sensing data: part 1: theoretical approach. Remote Sensing of Environment, 82(2): 188-197. |
[9] | Chuvieco E, Aguado I, Yebra M, et al.2010. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1): 46-58. |
[10] | Dlamini W M.2011. Application of Bayesian networks for fire risk mapping using GIS and remote sensing data. GeoJournal, 76(3): 283-296. |
[11] | Fotheringham A S, Brunsdon C, Charlton M.2002. Geographically weighted regression: the analysis of spatially varying relationships. Chichester, UK: John Wiley & Sons Ltd. |
[12] | Garrigues S, Allard D, Baret F, et al.2006. Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sensing of Environment, 103(1): 81-96. |
[13] | Hurvich C M, Simonoff J S, Tsai C.1998. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 60(2): 271-293. |
[14] | Krebs P, Koutsias N, Conedera M.2012. Modelling the eco-cultural niche of giant chestnut trees: new insights into land use history in southern Switzerland through distribution analysis of a living heritage. Journal of Historical Geography, 38(4): 372-386. |
[15] | Lozano F J, Suárez-Seoane S, Luis E D.2007. Assessment of several spectral indices derived from multi-temporal landsat data for fire occurrence probability modeling. Remote Sensing of Environment, 107(4): 533-544. |
[16] | Martíınez-Fernández J, Chuvieco E, Koutsias N.2013. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Natural Hazards and Earth System Sciences, 13(2): 311-327. |
[17] | Matthews S A, Yang T C.2012. Mapping the results of local statistics: using geographically weighted regression. Demographic Research, 26(6): 151-166. |
[18] | Páez A, Scott D M.2005. Spatial statistics for urban analysis: a review of techniques with examples. GeoJournal, 61(1): 53-67. |
[19] | Parisien M A, Snetsinger S, Greenberg J A, et al.2012. Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire, 21(4): 313-327. |
[20] | Pearce J, Ferrier S.2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modeling, 133(3): 225-245. |
[21] | Preisler H K, Westerling A L, Gebert K M, et al.2011. Spatially explicit forecasts of large wildland fire probability and suppression costs for California. International Journal of Wildland Fire, 20(4): 508-517. |
[22] | Puri K, Areendran G, Raj K, et al.2011. Forest fire risk assessment in parts of Northeast India using geospatial tools. Journal of Forestry Research, 22(4): 641-647. |
[23] | Swets J A.1988. Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285-1293. |
[24] | Wang Q, Ni J, Tenhunen J.2005. Application of a geographically weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global Ecology and Biogeography, 14(4): 379-393. |
[25] | Wheeler D C.2007. Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A, 39(10): 2464-2481. |
[26] | Wu W, Zhang L J.2013. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Applied Geography, 37: 52-62. |
[27] | Zhang H J, Han X Y, Dai S.2013. Fire occurrence probability mapping of Northeast China with binary logistic regression model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1): 121-127. |
[1] | ZHANG Hua, LIU Zheda, YIN Xiaobing. Spatial differences and influencing factors of inter-provincial migrant workers’ backflow intention in China [J]. PROGRESS IN GEOGRAPHY, 2021, 40(1): 73-84. |
[2] | ZHANG Jinping, LIN Dan, ZHOU Xiangli, YU Zhenxin, SONG Wei, CHENG Yeqing. Spatial difference of multidimensional poverty and its influencing factors in the rural areas of Hainan Province [J]. PROGRESS IN GEOGRAPHY, 2020, 39(6): 1013-1023. |
[3] | ZHANG Jingfei, ZHANG Lijun, QIN Yaochen, WANG Xia, SUN Yingying, RONG Peijun. Influencing factors of low-carbon behaviors of residents in Zhengzhou City from the perspective of cognition-behavior gaps [J]. PROGRESS IN GEOGRAPHY, 2020, 39(2): 265-275. |
[4] | GAO Genghe, WANG Yuchan, XU Zumu, GUO Yaqi, NIU Ning. Work location choice of returnee migrant workers:Case study of 45 villages in Henan Province [J]. PROGRESS IN GEOGRAPHY, 2020, 39(12): 2083-2093. |
[5] | GUO Xinwei, YU Bin, ZHUO Rongrong, ZENG Juxin, YAN Meiyan. Change of farming households' employment and influencing factors on the Jianghan Plain [J]. PROGRESS IN GEOGRAPHY, 2020, 39(12): 2094-2104. |
[6] | WU Xianghua, CHEN Xinyu, YUAN Feng. Job-housing relationship of people with housing difficulties and influencing factors in Nanjing City [J]. PROGRESS IN GEOGRAPHY, 2019, 38(12): 1890-1902. |
[7] | Jianshun WANG, Liyue LIN, Yu ZHU, Genijan·JELIL. Migrants' hukou transfer intention and dynamics in western ethnic minority regions: Evidence from Xinjiang Autonomous Region [J]. PROGRESS IN GEOGRAPHY, 2018, 37(8): 1140-1149. |
[8] | Yang LIU, Suhong ZHOU, Jiting ZHANG. The impact of intra-urban residential mobility on residents' health: A case study in Guangzhou City [J]. PROGRESS IN GEOGRAPHY, 2018, 37(6): 801-810. |
[9] | Erling LI, Yanan XU, Yajun YONG, Lixia WEI. Agricultural structure adjustment and rural transformation development in China:Taking Gongyi City and Yanling County as examples [J]. PROGRESS IN GEOGRAPHY, 2018, 37(5): 698-709. |
[10] | Xi WANG, Fengxian LU, Yaochen QIN, Yanfang SUN. Spatial and temporal changes of carbon sources and sinks in Henan Province [J]. PROGRESS IN GEOGRAPHY, 2016, 35(8): 941-951. |
[11] | Kejing WANG, Hongyan CAI, Xiaohuan YANG. Multiple scale spatialization of demographic data with multi-factor linear regression and geographically weighted regression models [J]. PROGRESS IN GEOGRAPHY, 2016, 35(12): 1494-1505. |
[12] | Mingxia XIE, Jiayao WANG, Ke CHEN. The model construction and empirical research on classification-based regionalization of geographical national conditions:Take Henan Province as an example [J]. PROGRESS IN GEOGRAPHY, 2016, 35(11): 1360-1368. |
[13] | Kaifeng LI, Chunmei MA, Wenhua GAO, Suyuan LI, Zhongxuan LI, Yanfang PAN. Progress and trend of Holocene environmental archaeology in Henan Province [J]. PROGRESS IN GEOGRAPHY, 2015, 34(7): 883-897. |
[14] | Xiaopei HE, Ge LIANG, Zhiwei DING, Fazeng WANG. Spatial evolution of the urbanization quality in Henan Province [J]. PROGRESS IN GEOGRAPHY, 2015, 34(2): 257-. |
[15] | WUWenjia, ZHANG Xiaoping, LI Yuanfang. Spatial correlation analysis of landscape accessibility and residential housing price in Beijing [J]. PROGRESS IN GEOGRAPHY, 2014, 33(4): 488-498. |
|