PROGRESS IN GEOGRAPHY ›› 2013, Vol. 32 ›› Issue (3): 416-424.doi: 10.11820/dlkxjz.2013.03.011
Previous Articles Next Articles
LIU Yujie, TAO Fulu
Received:
2012-07-01
Revised:
2012-12-01
Online:
2013-03-25
Published:
2013-03-25
LIU Yujie, TAO Fulu. Response of crop water use efficiency to elevated temperature and CO2 concentration——A review[J].PROGRESS IN GEOGRAPHY, 2013, 32(3): 416-424.
[1] Alejandro D P, Pilar P R M, Aitor A, et al. 2005. Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of N supply in a Mediterranean environment. Plant Science, 169(5): 908-916.[2] Allen L H, Kakani V G, Vu J C V, et al. 2011. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology, 168(16): 1909-1918.[3] Allen L H, Pan D Y, Boote K J, et al. 2003. Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean.Agronomy Journal, 95(4): 1071-1081.[4] Alonso A, Perez P, Martinez-Carrasco R. 2009. Growth in elevated CO2 enhances temperature response of photosynthesis in wheat. Physiologia Plantarum, 135(2): 109-120.[5] Alonso A, Perez P, Morcuende R, et al. 2008. Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses. Physiologia Plantarum, 132(1): 102-112.[6] Avola G, Cavallaro V, Patane C, et al. 2008. Gas exchange and photosynthetic water use efficiency in response to light, CO2 concentration and temperature in Vicia faba. Journal of Plant Physiology, 165(8): 796-804.[7] Bai L P, Lin E D. 2003. The effects of CO2 concentration enrichment and climate change on the agriculture. Chinese Journal of Eco-Agriculture, 11(2): 132-134. [白丽萍, 林 而达. 2003. CO2浓度升高与气候变化对农业的影响研究进展. 中国生态农业学报, 11(2): 132-134.][8] Ben-Asher J, Garcia A G Y, Hoogenboom G. 2008. Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica, 46 (4): 595-603.[9] Brouder S M, Volenec J J. 2008. Impact of climate change on crop nutrient and water use efficiencies. Physilogia Plantarum, 133(4): 705-724.[10] Bunce J A. 2001. Directed and acclimatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field. Global Change Biology, 7(3): 323-332.[11] Burkart S, Manderscheid R, Wittich K P, et al. 2011. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. Plant Biology, 13(2): 258-269.[12] Clifford S C, Stronach I M, Black C R, et al. 2000. Effects of elevated CO2, drought and temperature on the water relations and gas exchange of groundnut (Arachis hypogaea) stands grown in controlled environment glasshouses. Physiologia Plantarum, 110(1): 78-88.[13] Collino D J, Dardanelli J L, De Luca M J, et al. 2005. Temperature and water availability effects on radiation and water use efficiencies in alfalfa (Medicago sativa L.). Australian Journal of Experimental Agriculture, 45(4): 383-390.[14] David S. 2006. Climate change and crop yields: Beyond cassandra. Science, 312: 1889-1890.[15] David W, Lawlor D W, Mitchel R A C. 2000. Crop ecosystem responses to climatic change: Wheat//Reddy K R, Hodges H F. Climate change and global crop productivity.[16] Wallingford, UK: CAB International Press: 57-80 Davies W J, Zhang J, Yang J, et al. 2011. Novel crop science to improve yield and resource use efficiency in water-limited agriculture. Journal of Agricultural Science, 149(S1): 123-131.[17] De Souza A P, Gaspar M, Da Silva E A, et al. 2008. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant, Cell & Environment, 31(8): 1116-1127.[18] Dorey E. 2006. Climate change: Rise in CO2 will not help crop yields. Chemistry & Industry, (13): 9.[19] Erice G, Sanz-Saez A, Aranjuelo I, et al. 2011. Photosynthesis, N2 fixation and taproot reserves during the cutting regrowth cycle of alfalfa under elevated CO2 and temperature. Journal of Plant Physiology, 168(17): 2007-2014.[20] Garcia A G Y, Guerra L C, Hoogenboom G. 2009. Water use and water use efficiency of sweet corn under different weather conditions and soil moisture regimes. AgriculturalWater Management, 96(10): 1369-1376.[21] Ge Z M, Zhou X, Kellomaki S, et al. 2011. Responses of leaf photosynthesis, pigments and chlorophyll fluorescence within canopy position in a boreal grass (Phalaris arundinacea L.) to elevated temperature and CO2 under varying water regimes. Photosynthetica, 49(2): 172-184.[22] Gesch R W, Kang I H, Gallo-Meagher M, et al. 2003. Rubisco expression in rice leaves in related to genotypic variation of photosynthesis under elevated growth CO2 and temperature.[23] Plant, Cell and Environment, 26(12): 1941-1950.[24] Gratani L, Varone L, Crescente M F. 2009. Photosynthetic activity and water use efficiency of dune species: The influence of air temperature on functioning. Photosynthetica, 47(4): 575-585.[25] Green T R, Yu Q, Ma LW, et al. 2010. Crop water use efficiency at multiple scales Preface. Agricultural Water Management, 97(8): 1099-1101.[26] Grewal H S, Maheshwari B, Parks S E. 2011. Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: An Australian case study. AgriculturalWater Management, 98(5): 841-846.[27] Guo R P, Lin Z H, Mo X G, et al. 2010. Responses of crop yield and water use efficiency to climate change in the North China Plain. Agricultural Water Management, 97 (8): 1185-1194.[28] He J S, Wolfe-Bellin K S, Bazzaz F A, et al. 2005. Leaf-level physiology, biomass, and reproduction of Phytolacca Americana under conditions of elevated CO2 and altered temperature regimes. International Journal of Plant Sciences, 166(4): 615-622.[29] Horie T, Jeffery T B, Matsuit T, et al. 2000. Crop ecosystem responses to climatic change: Rice//Reddy K R, Hodges H F. Climate change and global crop productivity. Wallingford, UK: CAB International Press: 81-106.[30] Hu Z M, Yu G R, Wang Q F, et al. 2009. Ecosystem level water use efficiency: A review. Acta Ecologica Sinica, 29 (3): 1498-1507. [胡中民, 于贵瑞, 王秋凤, 等. 2009. 生态 系统水分利用效率研究进展. 生态学报, 29(3): 1498-1507.][31] Islam M R, Garcia S C. 2012. Effects of sowing date and nitrogen fertilizer on forage yield, nitrogen- and water-use efficiency and nutritive value of an annual triple-crop complementary forage rotation. Grass and Forage Science, 67 (1): 96-110.[32] Jeffrey T B. 2004. Yield responses of southern US rice cultivars to CO2 and temperature. Agricultural and Forest Me-teorology, 122(3-4): 129-137.[33] Kang S Z, Cai H J, Liu X M. 1996. The effect of climate changes in the future on crop evapotranspiration and water use efficiency. Journal of Hydraulic Engineering, 27 (4): 18-26. [康绍忠, 蔡焕杰, 刘晓明, 等. 1996. 大气CO2 浓度增加对农田蒸发蒸腾和作物水分利用的影响. 水 利学报, 27(4): 18-26.][34] Kang S Z, Zhang F C, Liang Y L. 1999. Effects of soil water and the atmospheric CO2 concentration increase on evapotranspiration, photosynthesis, growth of wheat, maize and cotton. Acta Agronomica Sinica, 25(1): 55-63. [康绍忠, 张富仓, 梁银丽. 1999. 土壤水分和浓度增加对 小麦、玉米、棉花蒸散、光合及生长的影响. 作物学报, 25(1): 55-63.][35] Kang S Z, Zhang F C, Hu X T, et al. 2002. Benefits of CO2 enrichment on crop plants are modified by soil water status. Plant and soil, 238(1): 69-77.[36] Leakey A D B, Uribelarrea M, Ainsworth E A, et al. 2006. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, 140(2): 779-790.[37] Lessin R C, Ghini R. 2009. Effect of increased atmospheric CO2 concentration on powdery mildew and growth of soybean plants. Tropical Plant Pathology, 34(6): 385-392.[38] Li F S, Kang S Z, Zhang F C. 2002. Effect of atmospheric CO2 and temperature increment on crop physiology and ecology. Chinese Journal of Applied Ecology, 13(9): 1169-1173. [李伏生, 康绍忠, 张富仓. 2002. 大气CO2浓 度和温度升高对作物生理生态的影响. 应用生态学报, 13(9): 1169-1173.][39] Li W L, Han X Z, Zhang Y Y, et al. 2007. Effect of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas. Agricultural Water Management, 87(1): 106-114.[40] Liao J X, Wang G X. 2002. Effects of drought, CO2 concentration and temperature increasing on photosynthesis rate, evapotranspiration, and water use efficiency of spring wheat. Chinese Journal of Applied Ecology, 13(5): 547-550. [廖建雄, 王根轩. 2002. 干旱、CO2和温度升高 对春小麦光合、蒸发蒸腾及水分利用效率的影响. 应用 生态学报, 13(5): 547-550.][41] Lin W H, Bai K Z, Kuang T Y. 1999. Effects of elevated CO2 and high temperature on single leaf and canopy photosynthesis of rice. Acta Botanica Sinica, 41(6): 624-628. [林伟 宏, 白克智, 匡廷云. 1999. 大气CO2 浓度和温度升高对 水稻叶片及群体光合作用的影响. 植物学报, 41(6): 624-628.][42] Liu J D, Liu W Q, Yu Q, et al. 2004. Numerical simulation of the impact of CO2 and temperature changes on crop canopy photosynthesis. Journal of Nanjing Institute of Meteorology, 27(1): 1-10. [刘建栋, 刘文泉, 于强, 等. 2004. 大 气CO2浓度升高及气候变化对作物冠层光合影响的数 值模拟. 南京气象学院学报, 27(1): 1-10.][43] Liu Y H, Huang L C, Lv F. 2010. Designing an artificial climate chamber control system based on the PLC and MCGS. Computer & Information Technology, 23(5): 115-117. [刘颖慧, 黄浪尘, 吕锋. 2010. 基于PLC 和MCGS 的人 工气候室调控系统设计. 机电产品开发与创新, 23(5): 115-117.][44] Mo X G, Liu S X, Lin Z H, et al. 2009. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agriculture Ecosystem & Environment, 134(1-2): 67-68.[45] Niu S L, Han X G, Ma K P, et al. 2007. Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology, 31(2): 262-271. [牛书丽, 韩兴国, 马克 平, 等. 2007. 全球变暖与陆地生态系统研究中的野外 增温装置. 植物生态学报, 31(2): 262-271.][46] Niu S L, Xing X R, Zhang Z, et al. 2011. Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Global Change Biology, 17(2): 1073-1082.[47] Peng S, Huang J, Sheehy J E, et al. 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101: 9971-9975.[48] Perez P, Zita G, Morcuende R, et al. 2007. Elevated CO2 and temperature differentially affect photosynthesis and resource allocation in flag and penultimate leaves of wheat. Photosynthetica, 45(1): 9-17.[49] Polley H W. 2002. Implications of atmospheric and climatic change for crop yield and water use efficiency. Crop Science, 42(1): 131-140.[50] Ponton S, Flanagan L B, Alstad K P, et al. 2006. Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology, 12 (2): 294-310.[51] Prasad P V, Boote K J, Allen L H, et al. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 95(2-3): 398-411.[52] Prior S A, Runion G B, Marble S C, et al. 2011. A review of elevated atmospheric CO2 effects on plant growth and water relations: Implications for horticulture. Hort Science, 46(2): 158-162.[53] Pugliese M, Gullino M L, Garibaldi A. 2010. Effects of elevated CO2 and temperature on interactions of grapevine and powdery mildew: First results under phytotron conditions. Journal of Plant Diseases and Plant Protection, 117 (1): 9-14.[54] Qiao Y Z, Zhang H Z, Dong B D, et al. 2010. Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes. AgriculturalWater Management, 97(11): 1742-1748.[55] Reddy A R, Rasineni G K, Raghavendra A S. 2010. The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Current Science, 99(1): 46-57.[56] Reddy V R, Reddy K R, Hodges H F. 1995. Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water-use efficiency. Field Crops Research, 41(1): 13-23.[57] Rostamza M, Chaichi M R, Jahansouz M R, et al. 2011. Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels. Agricultural Water Management, 98(10): 1607-1614.[58] Sakai H, Yagi K, Kobayashi K, et al. 2001. Rice carbon balance under elevated CO2. New Phytologist, 150(2): 241-249.[59] Sanchez-Guerrero M C, Lorenzo P, Medrano E, et al. 2009. Effects of EC-based irrigation scheduling and CO2 enrichment on water use efficiency of a greenhouse cucumber crop. AgriculturalWater Management, 96(3): 429-436.[60] Sarieva G E, Kenzhebaeva S S, Lichtenthaler H K. 2010. Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under high temperature conditions. Russian Journal of Plant Physiology, 57(1): 28-36.[61] Shan L. 2000. Water use efficiency//Zou C L. Contemporary biology. Beijing, China: China Zhi Gong Press: 399-400. [山仑. 2000. 水分利用效率//邹承鲁. 当代生物 学. 北京: 中国致公出版社: 399-400.][62] Soo-Hyung K, Dennis C G, Richard C S, et al. 2007. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany, 61(3): 224-236.[63] Sun G C, Zhao P, Zeng X P. 2001. Influence of elevated atmospheric CO2 concentration on photosynthesis and leaf nitrogen partition in process of photosynthetic carbon cycle in Musa paradisiacal. Chinese Journal of Applied Ecology, 12(3): 429-434. [孙谷畴, 赵平, 曾小平, 等. 2001. 大 气CO2浓度升高对香蕉光合作用及光合碳循环过程中 叶氮分配影响. 应用生态学报, 12(3): 429-434.][64] Tang R. 1999. Effect of double atmospheric CO2 concentration on rice photosynthesis and Rubisco. Rice Res Newsletter, 7(4): 7-8.[65] Tao F, Hayashi Y, Zhang Z, et al. 2008. Global warming, rice production and water use in China: Developing a probabilistic assessment. Agricultural and Forest Meteorology, 148(1): 94-110.[66] Thind H S, Buttar G S, Aujla M S, et al. 2011. Planting configuration and levels of irrigation water effect on yield and water-use efficiency of hybrid Bt cotton (Gossypium hirsutum) under drip and check-basin irrigation. Indian Journal of Agricultural Sciences, 81(2): 177-180.[67] Wang H X, Liu C M. 2000. Advances in crop water use efficiency research. Advance in Water Science, 11(1): 99-104. [王会肖, 刘昌明. 2000. 作物水分利用效率内涵 及研究进展. 水科学进展, 11(1): 99-104.][68] Wang J L, Yu G R, Fang Q X, et al. 2007. Constraints and regulation of crop water use efficiency. Crops, 23(2): 9-11. [王建林, 于贵瑞, 房全孝, 等. 2007. 作物水分利用效率 的制约因素与调节. 作物杂志, 23(2): 9-11.][69] Wang X L, Xu S H, Cui D C. 2003. The diagnosis and estimation of CO2 concentration increasing and climate warming on the agricultural production. Chinese Journal of Eco-Agriculture, 11(4): 47-48. [ 王修兰, 徐师华, 崔读 昌. 2003. CO2浓度倍增及气候变暖对农业生产影响的 诊断与评估. 中国生态农业学报, 11(4): 47-48.][70] Williams L, Baeza P. 2007. Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated, field-grown grapevines. American Journal of Enology and Viticulture, 58(2): 173-181.[81] Xiao G J, Zhang Q, Wang J. 2007. Impact of global climate change on agro-ecosystem: A review. Chinese Journal of Applied Ecology, 18(8): 1877-1885. [ 肖国举, 张强, 王 静. 2007. 全球气候变化对农业生态系统的影响研究进 展. 应用生态学报, 18(8): 1877-1885.][71] Xie L Y, Ma Z Y, Han X, et al. 2009. Impacts of CO2 enrichment and temperature increasing on grain quality of rice. Journal of Northeast Agricultural University, 40(3): 1-6. [谢立勇, 马占云, 韩雪, 等. 2009. CO2浓度与温度增高 对水稻品质的影响. 东北农业大学学报, 40(3): 1-6.][72] Yang H M,Wang G X. 2001. Leaf stomatal densities and distribution in triticum aestivum under drought and CO2 enrichment. Acta Phytoecologica Sinica, 25(2): 312-316. [杨惠 敏, 王根轩. 2001. 干旱和CO2浓度升高对干旱区春小麦 气孔密度及分布的影响. 植物生态学报, 25(2): 312-316.][73] Yavuz M Y, Yildirim M, Camoglu G, et al. 2007. Effect of different irrigation levels on yield, water use efficiency and some quality parameters of tomato. Philippine Agricultural Scientist, 90(4): 283-288.[74] Yoshida H, Horie T, Nakazono K, et al. 2011. Simulation of the effects of genotype and N availability on rice growth and yield response to an elevated atmospheric CO2 concentration. Field Crops Research, 124(3): 433-440.[75] Zhang B B, Liu W Z, Chang S X. 2010. Water-deficit and high temperature affected water use efficiency and arabinoxylan concentration in spring wheat. Journal of Cereal Science, 52(2): 263-269.[76] Zhang S R, Fan D Y, Strasser R J. 2007. A review of progress in studies of plant ecophysiology: Controlled experiments and instrumentation. Journal of Plant Ecology, 31 (5): 982-987. [张守仁, 樊大勇, Strasser R J. 2007. 植物 生理生态学研究中的控制实验和测定仪器新进展. 植 物生态学报, 31(5): 982-987.][77] Zheng F Y, Peng S L. 2001. Meta-analysis of the response of plant ecophysiological variables to doubled atmospheric CO2 concentrations. Acta Botanica Sinica, 43(11): 1101-1109. [郑凤英, 彭少麟. 2001. 植物生理生态指标 对大气CO2 浓度倍增响应的整合分析. 植物学报, 43 (11): 1101-1109.][78] Zhou J B, Wang C Y, Zhang H, et al. 2011. Effect of water saving management practices and nitrogen fertilizer rate on crop yield and water use efficiency in a winter wheat-summer maize cropping system. Field Crops Research, 122(2): 157-163.[79] Zhou X, Ge Z M, Kellomaki S, et al. 2011. Effects of elevated CO2 and temperature on leaf characteristics, photosynthesis and carbon storage in aboveground biomass of a boreal bioenergy crop (Phalaris arundinacea L.) under varying water regimes. Global Change Biology Bioenergy, 3 (3): 223-234. |
[1] | DENG Guofu, LI Mingqi. Advances of study on the relationship between tree-ring density and climate and climate reconstruction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 343-356. |
[2] | SHI Xiao, WANG Guojie, SUN Ming, LI Yvtao, WANG Boni, SHEN Jie. Evaluation of the long-term high-resolution infrared radiation sounder land surface temperature during 1980-2009 in Jiangsu Province, China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1283-1295. |
[3] | CHEN Xi, LI Ning, HUANG Chengfang, LIU Jiawei, ZHANG Zhengtao. Projection of heatwaves by the combined impact of humidity and temperature in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 36-44. |
[4] | Caishan ZHAO, Gang ZENG, Lijuan ZHANG, Xuezhen ZHANG. Effects of cropland and woodland conversion on land surface temperature based on Google Earth and MODIS land data: A case study of the middle and lower reaches of the Yangtze River Basin and its adjacent areas [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 698-708. |
[5] | Yihong HU, Daoyi GONG, Rui MAO, Xiaoxue SHI. Relationships between interannual variations of spring winds in the agro-pastoral transitional zone of Northern China and winter sea surface temperature [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 709-717. |
[6] | Kangmin WEN, Guoyu REN, Jiao LI, Yuyu REN, Xiubao SUN, Yaqing ZHOU, Aiying ZHANG. Adjustment of urbanization bias in surface air temperature over the mainland of China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 600-611. |
[7] | GAO Jing, GONG Jian, LI Jingye. Effects of source and sink landscape pattern on land surface temperature: An urban heat island study in Wuhan City [J]. PROGRESS IN GEOGRAPHY, 2019, 38(11): 1770-1782. |
[8] | Fangfang ZHANG, Yonghong ZHENG, Guoyan PAN, Shuai YUAN, Fanxi KONG, Yongdong QI, Dan WANG. Climatic significance of tree-ring δ18O in Shennongjia Mountain [J]. PROGRESS IN GEOGRAPHY, 2018, 37(7): 946-953. |
[9] | Zhixin HAO, Yani LIANG, Yang LIU, Xiu GENG, Jingyun ZHENG. Characteristics of temperature changes during the past millennium along the Ancient Silk Road [J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 485-494. |
[10] | Yinghui JIANG, Limin JIAO, Boen ZHANG. Scale effect of the spatial correlation between urban land surface temperature and NDVI [J]. PROGRESS IN GEOGRAPHY, 2018, 37(10): 1362-1370. |
[11] | Yelin FANG, Zhenfang HUANG, Fang WANG, Jinglong LI. Spatiotemporal evolution of provincial tourism efficiency and its club convergence in the Chinese Mainland [J]. PROGRESS IN GEOGRAPHY, 2018, 37(10): 1392-1404. |
[12] | Junhui YAN, Haolong LIU, Quansheng Ge, Jingyun ZHENG, Zhixin HAO, Yimin WANG. Reconstruction and analysis of annual mean temperature of Wuhan for the 1906-2015 period [J]. PROGRESS IN GEOGRAPHY, 2017, 36(9): 1176-1183. |
[13] | Wenjie HUANG, Quansheng GE, Junhu DAI, Huanjiong WANG. Sensitivity of first flowering dates to temperature change for typical woody plants in Guiyang City, China [J]. PROGRESS IN GEOGRAPHY, 2017, 36(8): 1015-1024. |
[14] | Jing LIN, Jianming CAI, Zhe CHENG. Human-oriented space making of institutional elderly care communities in the United States and implications [J]. PROGRESS IN GEOGRAPHY, 2017, 36(7): 903-911. |
[15] | Bin LI, Huimin WANG, Mingzhou QIN, Pengyan ZHANG. Comparative study on the correlations between NDVI, NDMI and LST [J]. PROGRESS IN GEOGRAPHY, 2017, 36(5): 585-596. |
|