[1] Scurlock J M O, Johnson K, Olson R J. Estimating netprimary productivity from grassland biomass dynamicsmeasurements. Global Change Biology, 2002, 8(8):736-753.[2] 王军邦, 黄玫, 林小惠. 青藏高原草地生态系统碳收支研究进展. 地理科学进展, 2012, 31(1): 123-128.[3] Soussana J F, Loiseau P, Vuichard N, et al. Carbon cyclingand sequestration opportunities in temperate grasslands.Soil Use and Management, 2004, 20(2): 219-230.[4] 赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价. 生态学报, 2004, 24(6): 1101-1110.[5] 方精云, 杨元合, 马文红, 等. 中国草地生态系统碳库及其变化. 中国科学: C辑, 2010, 40(7): 566-576.[6] Feng Q, Cheng G D, Mikami M. The carbon cycle of sandylands in China and its global significance. ClimaticChange, 2001, 48(4): 535-549.[7] Luo Y Q. Terrestrial carbon-cycle feedback to climatewarming. Annual Review of Ecology, Evolution, and sys-tematics, 2007, 38(1): 683-712.[8] 郑度, 李炳元. 青藏高原地理环境研究进展. 地理研究,1999, 19(4): 295-302.[9] 张镱锂, 李炳元, 郑度. 论青藏高原范围与面积. 地理研究, 2002, 21(1): 1-8.[10] 牛涛, 刘洪利, 宋燕,等. 青藏高原气候由暖干到暖湿时期的年代变化特征研究. 应用气象学报, 2005, 16(6):763-771.[11] 赵昕奕, 张惠远,万军. 青藏高原气候变化对气候带的影响. 地理科学, 2002, 22(2): 190-195.[12] 王根绪, 胡宏昌, 王一博, 等. 青藏高原多年冻土区典型高寒草地生物量对气候变化的响应. 冰川冻土, 2007,29(5): 671-679.[13] 郑度, 林振耀, 张雪芹. 青藏高原与全球环境变化研究进展. 地学前缘, 2002, 9(1): 95-102.[14] 田玉强, 高琼, 张智才, 等. 青藏高原高寒草地植物光合与土壤呼吸研究进展. 生态环境学报, 2009, 18(2):711-721.[15] 冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据. 科学通报, 1998, 43(4): 633-636.[16] Ni J. Carbon storage in grasslands of China. Journal ofArid Environments, 2002, 50(2): 205-218.[17] Olson J S, Watts J A, Allison L J. Carbon In Live Vegetationof Major World Ecosystems. Oak Ridge: Oak RidgeNational Laboratory, 1983: 50-51.[18] Ni J. Forage yield-based carbon storage in grasslands ofChina. Climatic Change, 2004, 67(2): 237-246.[19] 罗天祥, 李文华, 冷允法, 等. 青藏高原自然植被总生物量的估算与净初级生产量的潜在分布. 地理研究,1998, 17(4): 337-344.[20] Fan J W, Zhong H P, Harris W, et al. Carbon storage inthe grasslands of China based on field measurements ofabove-and below-ground. Climatic Change, 2008, 86(3):375-396.[21] Yang Y H, Fang J Y, Ma W H, et al. Large-scale patternof biomass partitioning across China's grasslands. GlobalEcology and Biogeography, 2010, 19(2): 268-277.[22] 杨秀春, 徐斌, 朱晓华, 等. 北方农牧交错带草原产草量遥感监测模型. 地理研究, 2007, 26(2): 213-221.[23] Piao S L, Fang J Y, Zhou L M, et al. Changes in biomasscarbon stocks in China’s grasslands between 1982and 1999. Global Biogeochemical Cycles, 2007, 21(2):GB2002, doi: 10.1029/2005GB002634.[24] 朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498.[25] Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetationcarbon sinks in China Terrestrial vegetation carbonsinks in China, 1981-2000. Science in China: Series D,2007, 50(9): 1341-1350.[26] 徐斌, 杨秀春, 陶伟国, 等. 中国草原产草量遥感监测.生态学报, 2007, 27(2): 405-413.[27] 马文红, 方精云, 杨元合, 等. 中国北方草地生物量动态及其与气候因子的关系. 中国科学: C 辑, 2010, 40(7): 632-641.[28] 李长生. 陆地生态系统的模型模拟. 复杂系统与复杂性科学, 2004, 1(1): 49-57.[29] Peng C H. From static biogeographical model to dynamicglobal vegetation model: A global perspective on modelingvegetation dynamics. Ecology Modelling, 2000, 135(1): 33-54.[30] 朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力. 植物生态学报, 2001, 25(5):603-608.[31] 冯险峰, 刘高焕, 陈述彭, 等. 陆地生态系统净第一性生产力过程模型研究综述. 自然资源学报, 2004, 19(3):369-378.[32] Peng C H, Apps M J. Contribution of China to the globalcarbon cycle since the last glacial maximum. Tullus,1997, 49(4): 393-408.[33] 张峰. 中国草原碳库储量及温室气体排放量估算[D]. 兰州: 兰州大学, 2010.[34] 黄玫, 季劲钧, 曹明奎, 等. 中国区域植被地上与地下生物量模拟. 生态学报, 2006, 26(12): 4156-4163.[35] Tan K, Ciais P, Piao S L, et al. Application of the ORCHIDEEglobal vegetation model to evaluate biomassand soil carbon stocks of Qinghai-Tibetan grasslands.Global Biogeochemical Cycles, 2010, 24, GB1013,doi10.1029/2009GB003530.[36] 杨元合. 青藏高原高寒草地生态系统碳氮储量[D]. 北京: 北京大学, 2008.[37] 王建林, 常天军, 李鹏, 等. 西藏草地生态系统植被碳贮量及其空间分布格局. 生态学报, 2009, 29(2): 931-938.[38] 方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳库//王庚辰, 温玉璞. 温室气体浓度和排放监测及相关过程.北京: 中国环境科学出版社, 1996: 109-128.[39] 王建林, 欧阳华, 王忠红, 等. 青藏高原高寒草原生态系统植被碳密度分布规律及其与气候因子的关系. 植物资源与环境学报, 2010, 19(1): 1-7.[40] Mokany K, Raison R J, Prokushkin A S. Critical analysisof root: Shoot ratios in terrestrial biomes. GlobalChange Biology, 2006, 12(1): 84-96.[41] Brouwer R. Nutritive influences on the distribution of drymatter in the plant. Netherlands Journal of AgriculturalScience, 1962, 10(361):399-408.[42] Niklas K J. A phyletic perspective on the allometry ofplant biomass-partitioning patterns and functionallyequivalent organ-categories. New Phytologist, 2006, 171(1): 27-40.[43] Fang J Y, Chen A X, Peng C H, et al. Changes in forestbiomass carbon storage in China between 1949 and 1998.Science, 2001, 292(5525): 2320-2322.[44] Yu H Y, Luedeling E, Xu J C. Winter and spring warm-ing result in delayed spring phenology on the Tibetan Plateau.Proceedings of the National Academy of Sciences,2010, 107(51): 22151-22156.[45] Wang R Z, Gao Q, Chen Q S. Effects of climatic changeon biomass and biomass allocation in Leymus chinensis(Poaceae) along the North-east China Transect(NECT).Journal of Arid Environments, 2003, 54(4): 653-665.[46] Wang R Z, Earle A R, Zu Y G, et al. Demography of reproductiveand biomass allocation of grassland and duneLeymus chinensis on the Songnen Plain, north-easternChina. Journal of Arid Environments, 2001, 49(2):289-299.[47] 张娜, 梁一民. 黄土丘陵区天然草地地下/地上生物量的研究. 草业学报, 2002, 11(2): 72-78.[48] 马文红, 方精云. 内蒙古温带草原的根冠比及其影响因素. 北京大学学报: 自然科学版, 2006, 42(6): 774-778.[49] 王政权, 郭大立. 根系生态学. 植物生态学报, 2008, 32(6): 1213-1216.[50] Wu Y B, Wu J, Deng Y C, et al. Comprehensive assessmentsof root biomass and production in a in a Kobresiahumilis meadow on the Qinghai-Tibetan Plateau. Plantand Soil, 2011, 338(1-2): 497-510.[51] Ma W L, Shi P L, Li W H, et al. Changes in individualplant traits and biomass allocation in alpine meadow withelevation variation on the Qinghai-Tibetan Plateau. ScienceChina Life Sciences, 2010, 53(9): 1142-1151.[52] 吴绍洪, 尹云鹤, 郑度, 等. 青藏高原近30 年气候变化趋势. 地理学报, 2005, 60(1): 3-11.[53] 马晓波, 李栋梁. 青藏高原近代气温变化趋势及突变分析. 高原气象, 2003, 22(5): 507-512.[54] 丁一汇, 张莉. 青藏高原与中国其他地区气候突变时间的比较. 大气科学, 2008, 32(4): 794-805.[55] 徐兴奎, 陈红, Levy J K. 气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析. 科学通报,2008, 53(4): 456-462.[56] 杨元合, 朴世龙. 青藏高原草地植被覆盖变化及其与气候因子的关系. 植物生态学报, 2006, 30(1): 1-8.[57] 毛飞, 侯英雨, 唐世浩, 等. 基于近20 年遥感数据的藏北草地分类及其动态变化. 应用生态学报, 2007, 18(8):1745-1750.[58] 周华坤, 周立, 赵新全, 等. 青藏高原高寒草甸生态系统稳定性研究. 科学通报, 2006, 51(1): 63-69.[59] Luo T X, Li W H, Zhu H Z. Estimated biomass and productivityof natural vegetation on the Tibetan Plateau.Ecological Applications, 2002, 12(4): 980-997.[60] Fang J Y, Piao S, Tang Z Y, Peng C H, Ji W. Interannualvariability in net primary production and precipitation.Science, 2001, 293(5536): 1723.[61] 樊江文, 钟华平, 梁飚, 等. 草地生态系统碳储量及其影响因素. 中国草地, 2003, 25(6): 51-58.[62] 周睿, 杨元合, 方精云. 青藏高原植被活动对降水变化的响应. 北京大学学报: 自然科学版, 2007, 43(6):771-775.[63] 梁四海, 陈江, 金晓媚, 等. 近21 年青藏高原植被覆盖变化规律. 地球科学进展, 2007, 22(1): 33-40.[64] 方精云, 朴世龙, 贺金生, 等. 近20 年来中国植被活动在增强. 中国科学: C辑, 2003, 33(6): 554-567.[65] 朴世龙, 方精云. 1982-1999 年青藏高原植被净第一性生产力及其时空变化. 自然资源学报, 2002, 17(3):373-380.[66] Zhou D W, Fan G Z, Huang R H, et al. Interannual variabilityof the normalized difference vegetation index onthe Tibetan Plateau and its relationship with climatechange. Advances in Atmospheric Sciences, 2007, 24(3):474-484.[67] Melillo J M, Steudler P A, Aber J D, et al. Soil warmingand carbon-cycle feedbacks to the climate system. Science,2002, 298(5601): 2173-2176.[68] White M A, Running S W, Thornton P E. The impact ofgrowing-season length variability on carbon assimilationand evapotranspiration over 88 years in the eastern USdeciduous forest. International Journal of Biometeorology,1999, 42(3): 139-145.[69] Dunne J A, Harte J, Taylor K J. Subalpine meadow floweringphenology responses to climate change: integratingexperimental and gradient methods. Ecological Monographs,2003, 73(1): 69-86.[70] Price M V, Waser N M. Effects of experimental warmingon plant reproductive phenology in a subapline meadow.Ecology, 1998, 79(4): 1261-1271.[71] Jonasson S, Michelsen A, Schmidt I K, et al. Reponsesin microbes and plants to changed temperature, nutrient,and light regimes in the arctic. Ecology, 1999, 80(6):1828-1843.[72] Epstein H E, Lauenroth W K, Burke I C. Effects of temperatureand soil texture on ANPP in the U.S. GreatPlains. Ecology, 1997, 78(8): 2628-2631.[73] Burke I C, Lauenroth W K, Parton W J. Regional andtemporal variation in net primary production and nitrogenmineralization in grasslands. Ecology, 1997, 78(5):1330-1340.[74] Epstein H E, Lauenroth W K, Burke I C, et al. Ecologicalresponses of dominant grasses along two climatic gradientsin the Great Plains of the United States. Journal ofVegetation Science, 1996, 7(6): 777-788.[75] Sala O E, Parton W J, Joyce L A, Lauenroth W K. Primaryproduction of the central grassland region of theUnited States. Ecology, 1988, 69(1): 40-45.[76] Yang Y H, Fang J Y, Pan Y D, et al. Aboveground biomassin Tibetan grasslands. Journal of Arid Environments,2009, 73(1): 91-95.[77] Craine J M, Nippert J B, Elmore A J, et al. Timing of climate variability and grassland productivity. Proceedingsof the National Academy of Sciences, 2012, 109(9):3401-3405.[78] 于海英, 许建初. 气候变化对青藏高原植被影响研究综述. 生态学杂志, 2009, 28(4): 747-754.[79] 齐玉春, 董云社, 耿元波, 等. 我国草地生态系统碳循环研究进展. 地理科学进展, 2003, 22(4): 342-352.[80] 王艳芬, 汪诗平. 不同放牧率对内蒙古典型草原地下生物量的影响. 草地学报, 1999, 7(3): 198-203.[81] Ojima D S, Dirks B O M, Glenn E P, et al. Assessmentof C budget for grasslands and drylands of the world. Water,Air & Soil Pollution, 1993, 70(1): 95-109.[82] 钟华平, 樊江文, 于贵瑞, 等. 草地生态系统碳蓄积的研究进展. 草业科学, 2005, 22(1): 4-11. |