PROGRESS IN GEOGRAPHY ›› 2012, Vol. 31 ›› Issue (11): 1433-1442.doi: 10.11820/dlkxjz.2012.11.003
• Original Articles • Previous Articles Next Articles
LIU Lingling1,2, LIU Liangyun1, HU Yong1,2
Received:
2011-11-01
Revised:
2012-04-01
Online:
2012-11-25
Published:
2012-11-25
LIU Lingling, LIU Liangyun, HU Yong. Assessment and Intercomparison of Satellite-derived Start-of-Season (SOS) Measures in Eurasia for 1982-2006[J].PROGRESS IN GEOGRAPHY, 2012, 31(11): 1433-1442.
[1] 任国玉. 气候变暖成因研究的历史, 现状和不确定性.地球科学进展, 2008, 23(10): 1084-1091.[2] 武永峰, 何春阳, 马瑛, 等. 基于计算机模拟的植物返青期遥感监测方法比较研究. 地球科学进展, 2005, 20(7):724-731.[3] Schwartz M, R. Ahas, Aasa A. Onset of spring startingearlier across the Northern Hemisphere. Global ChangeBiology, 2006, 12(2): 343-351.[4] Myneni R, Keeling C, Tucker C, et al. Increased plantgrowth in the northern high latitudes from 1981 to 1991.Nature, 1997, 386(6626): 698-702.[5] Delbart N, Le Toan T, Kergoat L, et al. Remote sensingof spring phenology in boreal regions: A free of snow-effectmethod using NOAA-AVHRR and SPOT-VGT data(1982-2004). Remote Sensing of Environment, 2006, 101(1): 52-62.[6] Zhang X, Friedl M, Schaaf C. Global vegetation phenologyfrom moderate resolution imaging spectroradiometer(MODIS): evaluation of global patterns and comparisonwith in situ measurements. Journal of Geophysical Research,2006, 111(G4): G04017.[7] Studer S, R St ckli, Appenzeller C, et al. A comparativestudy of satellite and ground-based phenology. InternationalJournal of Biometeorology, 2007, 51(5): 405-414.[8] Schwartz M, Reed B, White M. Assessing satellite-derivedstart-of-season measures in the conterminous USA.International Journal of Climatology, 2002, 22(14):1793-1805.[9] Maignan F, Bréon F, Bacour C, et al. Interannual vegetationphenology estimates from global AVHRR measurements:Comparison with in situ data and applications. RemoteSensing of Environment, 2008, 112(2): 496-505.[10] White M, de Beursk K, Didan K, et al. Intercomparison,interpretation, and assessment of spring phenology inNorth America estimated from remote sensing for1982-2006. Global Change Biology, 2009, 15(10):2335-2359.[11] Zhou L, Kaufmann R K, Shabanov N V, et al. Variationsin northern vegetation activity inferred from satellite dataof vegetation index during 1981 to 1999. Journal of GeophysicalResearch, 2001, 106(D17): 20069-20083.[12] Studer S, Appenzeller C, Defila C. Inter-annual variabilityand decadal trends in alpine spring phenology: A multivariateanalysis approach. Climatic Change, 2005, 73(3):395-414.[13] Piao S, Ciais P, Friedlingstein P, et al. Net carbon dioxidelosses of northern ecosystems in response to autumnwarming. Nature, 2008, 451(7174): 49-52.[14] Cleland E, Chiariello N, Loarie S, et al. Diverse responsesof phenology to global changes in a grassland ecosys-tem. Proceedings of the National Academy of Sciences,2006, 103(37): 13740.[15] Piao S, Fang J, Zhou L, et al. Variations in satellite-derivedphenology in China's temperate vegetation. GlobalChange Biology, 2006, 12(4): 672-685.[16] Sparks T, Jeffree E, Jeffree C. An examination of the relationshipbetween flowering times and temperature at thenational scale using long-term phenological records fromthe UK. International Journal of Biometeorology, 2000,44(2): 82-87.[17] Kramer K Phenology. Growth of European trees in relationto climate change[D]. Landbouw-Universität Wageningen,1996.[18] Rötzer T, Chmielewski F M. Phenological maps of Europe.Climate Research, 2001, 18(3): 249-257.[19] 于嵘. 基于遥感时序数据的中国陆地植被覆盖变化分析研究[D]. 北京: 中国科学院遥感应用研究所, 2006.[20] 范锦龙. 复种指数遥感监测方法研究[D]. 北京: 中国科学院研究生院, 2003.[21] Julien Y, Sobrino J. Comparison of cloud-reconstructionmethods for time series of composite NDVI data. RemoteSensing of Environment, 2010, 114(3): 618-625.[22] Menenti M, Azzali S, Verhoef W, et al. Mapping agroecologicalzones and time lag in vegetation growth by meansof Fourier analysis of time series of NDVI images. Advancesin Space Research, 1993, 13(5): 233-237.[23] Roerink G, Su Z, Menenti M. S-SEBI: A simple remotesensing algorithm to estimate the surface energy balance.Physics and Chemistry of the Earth: Part B, Oceans andAtmosphere, 2000, 25(2): 147-157.[24] 方修琦, 余卫红. 物候对全球变暖响应的研究综述. 地球科学进展, 2002, 17(5): 714-719.[25] Yu X, Zhuang D. Monitoring forest phenophases ofNortheast China based on MODIS NDVI Data. ResourcesScience, 2006, 28(4): 111-117.[26] Reed B C, Brown J F, VanderZee D, et al. Measuring phenologicalvariability from satellite imagery. Journal ofVegetation Science, 1994, 5(5): 703-714.[27] Fisher J, Mustard J, Vadeboncoeur M. Green leaf phenologyat Landsat resolution: Scaling from the field to thesatellite. Remote Sensing of Environment, 2006, 100(2):265-279.[28] Jönsson P, Eklundh L. Seasonality extraction by functionfitting to time-series of satellite sensor data. Geoscienceand Remote Sensing, 2002, 40(8): 1824-1832.[29] Zhang X, Friedl M, Schaaf C, et al. Monitoring vegetationphenology using MODIS. Remote Sensing of Environment,2003, 84(3): 471-475.[30] Fisher J, Mustard J. Cross-scalar satellite phenology fromground, Landsat, and MODIS data. Remote Sensing ofEnvironment, 2007, 109(3): 261-273.[31] Delbart N, Kergoat L, Le Toan T, et al. Determination ofphenological dates in boreal regions using normalized differencewater index. Remote Sensing of Environment,2005, 97(1): 26-38.[32] van Leeuwen W J D. Monitoring the effects of forest restorationtreatments on post-fire vegetation recovery withMODIS multitemporal data. Sensors, 2008, 8(3):2017-2042.[33] Jönsson P, Eklundh L. TIMESAT: A program for analyzingtime-series of satellite sensor data. Computers & Geosciences,2004, 30(8): 833-845.[34] Zeng H, Jia G, Epstein H. Recent changes in phenologyover the northern high latitudes detected from multi-satellitedata. Environmental Research Letters, 2011, 6:045508.[35] Zeng H, Jia G, Epstein H. Recent changes in phenologyover the northern high latitudes detected from multi-satellitedata. Environmental Research Letters, 2011, 6(4):045508.[36] Reed B. Trend analysis of time-series phenology of NorthAmerica derived from satellite data. GIScience & RemoteSensing, 2006, 43(1): 24-38.[37] Baldocchi D, Black T, Curtis P, et al. Predicting the onsetof net carbon uptake by deciduous forests with soil temperatureand climate data: A synthesis of FLUXNET data.International Journal of Biometeorology, 2005, 49(6):377-387.[38] Richardson A, T Andy Black, Ciais P, et al. Influence ofspring and autumn phenological transitions on forest ecosystemproductivity. Philosophical Transactions of theRoyal Society B: Biological Sciences, 2010, 365(1555):3227. |
[1] | DENG Guofu, LI Mingqi. Advances of study on the relationship between tree-ring density and climate and climate reconstruction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 343-356. |
[2] | AO Xue, ZHAI Qingfei, CUI Yan, ZHOU Xiaoyu, SHEN Lidu, ZHAO Chunyu, Ning Xilong. Detection of urbanization effect on the climate change in Liaoning Province based on empirical orthogonal function methods [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1532-1543. |
[3] | ZHOU Meijun, LI Fei, SHAO Jiaqi, YANG Haijuan. Change characteristics of maize production potential under the background of climate change in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 443-453. |
[4] | SONG Zhen, SHI Xingmin. Path analysis of influencing factors of farmers’ adaptive behaviors to climate change in the rain-fed agricultural areas [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 461-473. |
[5] | ZHANG Xuezhen, ZHENG Jingyun, HAO Zhixin. Climate change assessments for the main economic zones of China during recent decades [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1609-1618. |
[6] | XIE Zhenghui, LIU Bin, YAN Xiaodong, MENG Chunlei, XU Xianli, LIU Yu, QIN Peihua, JIA Binghao, XIE Jinbo, LI Ruichao, WANG Longhuan, WANG Yan, CHEN Si. Effects of implementation of urban planning in response to climate change [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 120-131. |
[7] | DONG Xiaoyu, YAO Huarong, DAI Junhu, ZHU Mengyao. Phenological changes of desert steppe vegetation and its effect on net primary productivity in Inner Mongolia from 2000 to 2017 [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 24-35. |
[8] | SUN Rui,CHEN Shaohui,SU Hongbo. Spatiotemporal variations of NDVI of different land cover types on the Loess Plateau from 2000 to 2016 [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1248-1258. |
[9] | Shixi ZHANG, Junhu DAI, Quansheng GE. Progress of responses of first flowering date to climate change and the correlations of plant hormone regulation [J]. PROGRESS IN GEOGRAPHY, 2019, 38(7): 1045-1055. |
[10] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[11] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[12] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[13] | Yanxi ZHAO, Dengpan XIAO, Huizi BAI, Fulu TAO. Research progress on the response and adaptation of crop phenology to climate change in China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 224-235. |
[14] | WU Qihui, LI Changyou, SUN Biao, SHI Xiaohong, ZHAO Shengnan, HAN Zhiming. Change of ice phenology in the Hulun Lake from 1986 to 2017 [J]. PROGRESS IN GEOGRAPHY, 2019, 38(12): 1933-1943. |
[15] | Yuke ZHOU. Comparative study of vegetation phenology extraction methods based on digital images [J]. PROGRESS IN GEOGRAPHY, 2018, 37(8): 1031-1044. |
|