PROGRESS IN GEOGRAPHY ›› 2012, Vol. 31 ›› Issue (11): 1415-1425.doi: 10.11820/dlkxjz.2012.11.001
• Original Articles • Next Articles
ZHANG Wei1, LI Yuanyuan1, FENG Ji2, BI Weili1, LIU Ge1
Received:
2012-01-01
Revised:
2012-04-01
Online:
2012-11-25
Published:
2012-11-25
ZHANG Wei, LI Yuanyuan, FENG Ji, BI Weili, LIU Ge. Magnetic Susceptibility of Glacial Deposits and the Impacting Factors in the Eastern Bordering Mountains of the Tibetan Plateau[J].PROGRESS IN GEOGRAPHY, 2012, 31(11): 1415-1425.
[1] Thompson R, Oldfield F. Environmental Magentism. London:George Allen & Unwin, 1986: 1-83.[2] 俞立中, 许羽, 许世远, 等. 太湖沉积物的磁性特征及其环境意义. 湖泊科学, 1995, 7(2): 141-150.[3] 张振克, 吴瑞金, 王苏民. 岱海湖泊沉积物频率磁化率对历史时期环境变化的反映. 地理研究, 1998, 17(3):297-302.[4] 胡守云, 吉磊, 王苏民, 等. 呼伦湖地区扎赉诺尔晚第四纪湖泊沉积物的磁化率变化及其影响因素. 湖泊科学,1995, 7(1): 33-40.[5] 余铁桥, 贾铁飞. 巢湖CH_1 孔沉积物磁性、粒度特征分析. 上海师范大学学报: 自然科学版, 2008, 37(5):523-528.[6] 陈荣彦, 宋学良, 张世涛, 等. 滇池700 年以来气候变化与人类活动的湖泊环境响应研究. 盐湖研究, 2008, 16(2): 7-12.[7] 刘东生. 黄土与环境. 北京: 科学出版社, 1985.[8] 孙玉芳, 强小科, 徐新文, 等. 黄土高原西北缘末次冰期晚期以来黄土沉积物的岩石磁学性质. 地球物理学报,2011, 54(5): 1310-1318.[9] 李徐生, 杨达源. 镇江下蜀黄土、古土壤序列磁化率特征与环境记录. 中国沙漠, 2002, 22(1): 27-32.[10] 李秉成, 胡培华, 王艳娟. 关中泾阳塬全新世黄土剖面磁化率的古气候阶段划分. 吉林大学学报: 地球科学版, 2009, 39(1): 99-106.[11] 许峰宇, 钱刚. 萧县黄土剖面的磁化率测量及意义. 徐州师范学院学报:自然科学版, 1996, 14(3): 51-54.[12] Sun Y, Wang X, Liu Q, et al. Impacts of post-depositionalprocesses on rapid monsoon signals recorded by thelast glacial loess deposits of northern China. Earth andPlanetary Science Letters, 2010, 289(1-2): 171-179.[13] 李丽, 张威, 李云艳, 等. 大连市七顶山黄土剖面磁化率特征及其古环境变迁的初步研究. 资源与产业, 2008,10(6): 112-118.[14] 杨建强, 崔之久, 易朝露, 等. 云南点苍山冰川湖泊沉积物磁化率的影响因素及其环境意义. 第四纪研究,2004, 24(5): 591-597.[15] 张威, 郭善莉, 崔之久. 冰蚀湖相沉积物的环境磁学特征. 辽宁工程技术大学学报, 2004, 23(6): 740-743.[16] 王丽娟, 庞奖励, 黄春长,等. 甜水沟全新世黄土—古土壤序列风化程度及意义. 地理科学进展, 2011, 30(3):379-384.[17] 张卫国, 俞立中, 许羽. 环境磁学研究的简介. 地球物理学进展, 1995, 10(3): 95-105.[18] 葛淑兰, 石学法, 韩贻兵. 南黄海海底沉积物的磁化率特征. 科学通报, 2001, 46(S1): 34-38.[19] 徐方建, 李安春弘, 李铁刚,等. 末次冰消期以来东海内陆架沉积物磁化率的环境意义. 海洋学报, 2011, 33(1): 91-97.[20] Bjorck S, Dearing J A, Josson A. Magnetic susceptibilityof Late Weichselian deposits in southeastern Sweden,Boreas, 1982, 11: 99-111.[21] 马秋华, 何元庆. 太白山第四纪冰碛物特征与冰期. 冰川冻土, 1988, 10(1): 66-75.[22] Rost K T. Plaeo-climatic Field Studies in and alone theQingling Shan (central China). GeoJournal, 1994, 34(1):107-120.[23] 施雅风, 崔之久, 苏珍. 中国第四纪冰川与环境变化. 石家庄: 河北科学技术出版, 2005: 520-557.[24] 崔之久, 谢又予, 李洪云. 四川攀西螺髻山第四纪冰川作用遗迹与冰期系列. 冰川冻土, 1986, 8(2): 107-118.[25] 刘耕年. 川西螺髻山冰川侵蚀地貌研究. 冰川冻土,1989, 11(3): 249-259.[26] Iwata I, Yagi H,Feng Y Z. Glacial extent and ELAs duringthe Last Glacial period in Yunnan province, China//Fujiwara K. Proceedings of International Symposium onPaleo-environmental Change in Tropical-subtropicalMonsoon Asia. Hiroshima: Special Publication, 1995:113-123.[27] 李吉均. 季风亚洲末次冰期的古冰川遗迹. 第四纪研究, 1992, 12(4): 332-340.[28] Cui Z J, Yang C F, Liu G N, et al. The Quaternary glaciationof Shesan Mountain in Taiwan and glacial classificationin monsoon areas. Quaternary International, 2002(97-98): 147-153[29] Zhang W, Cui Z J, Feng J L, et al. Late Pleistocene glaciationof the Hulifang massif of Gongwang Mountains.Journal of Geography Sciences, 2005, 4: 448-458.[30] 易朝路, 刘克新, 崔之久. 天山乌鲁木齐河河源末次冰期以来冰川沉积物AMS 测年及其意义. 科学通报,1998, 43(6): 655-656.[31] 周尚哲, 许刘兵, Colgan P M. 古乡冰期和白玉冰期的宇宙成因核素10Be测年. 科学通报, 2007, 52(8): 945-950.[32] Cui Z J, Yang J F, Liu G N, et al. Discovery of Quaternaryglacial evidence on Snow Mountain in Taiwan, China.Chinese Science Bulletin, 2000, 45(6): 566-571.[33] Collinson D W. Methods in Rock Magnetism and paleomagnetism.London,New York: Chapman and Hall,1983: 21-33.[34] Dearing J A. Environmental Magnetic Susceptibility Usingthe Bartington MS2 system. England: Chi Publishing,1994: 52-55.[35] 简平, 刘敦一, 孙晓猛. 滇西北白马雪山和鲁甸花岗岩基SHRIMPU_Pb 年龄及其地质意义. 地球学报, 2003,24(4): 337-342.[36] 赵红格, 刘池洋, 王锋, 等. 贺兰山隆升时限及其演化.中国科学: D辑, 2007, 37(S1): 185-192.[37] 明庆忠, 苏怀, 史正涛, 等. 云南小中甸盆地湖相沉积记录最近的5 次Heinrich 事件. 地理学报, 2011, 66(1):123-130.[38] 夏正楷. 太白山古冰川地貌与地质构造. 冰川冻土,1990, 12(2): 155-160.[39] 张西娟, 曾庆利, 马寅生. 玉龙—哈巴雪山断块差异隆升的基本特征及其地质灾害效应. 中国地质, 2006, 33(5): 1075-1082.[40] 安保华. 老君山岩体特征、成因及其找矿意义探讨. 西南矿产地质, 1990, 4(1): 35-35.[41] Kletetschka G, Banerjee S K. Magnetic stratigraphy ofChinese loess as a record of natural fires. GeophysicalResearch Letters, 1995, 22(11): 1341-1343.[42] Borgne L E. Susceptilite magnetique anormale dusol superficiel.Ann Geophys, 1955, 11(5): 399-419.[43] Oadas J M. The nature and distribution of iron compoundsin soil. Soil & Fertilizer, 1963, 26(1): 69-79.[44] Maher B A, Taylor R M. Formation of ultrafine-grainedmagnetite in soils. Nature, 1988, 336(6197): 368-370.[45] 张子玉, 俞劲炎. 土壤经大火焚烧后磁化率增加的机理探讨. 土壤通报, 1994, 25(4): 163-165.[46] Dong R B, Yu J Y, Yu L Z, et al. Characterizing fire-inducedmagnetic enhancement of some red soils in Zhejiangprovince, China. Journal of Zhejiang AgriculturalUniversity, 1998, 24(6): 572-578.[47] 夏正楷. 第四纪环境学. 北京大学出版社, 1997: 17.[48] 阎桂林. 考古磁学—磁学在考古中的应用. 考古, 1997:1, 84-91.[49] 阎桂林. 考古磁学—磁学在考古中的应用. 物探与化探, 1996, 20(2): 141-148.[50] 吕厚远, 韩家憋, 吴乃琴, 等. 中国现代土壤磁化率分析及其古气候意义. 中国科学版: B 辑, 1994, 24(12):1290-1297.[51] 罗成德. 马鞍山的古冰川地貌. 地理科学, 1997, 17(3):285-288.[52] 吴瑞金. 湖泊沉积物的磁化率、频率磁化率及其古气候意义: 以青海湖、岱海近代沉积为例. 湖泊科学, 1993, 5(2): 128-135.[53] Oldfield F. Environmental Magnetism: A personal perspective.Quaternary Science Reviews, 1991, 10(1):73-85.[54] 刘秀铭, 夏敦胜, 刘东生, 等. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨. 第四纪研究, 2007,27(2): 210-220.[55] 胡守云, 邓成龙, Appel E, 等. 湖泊沉积物磁学性质的环境意义. 科学通报, 2001, 46(17): 1491-1494.[56] 郭斌, 朱日祥, 白立新, 等. 黄土沉积物的岩石磁学特征与土壤化作用的关系. 中国科学: D 辑, 2001, 31(5):377-386.[57] 王晓勇, 鹿化煌, 李珍, 等. 青藏高原东北部黄土堆积的岩石磁学性质及其古气候意义. 科学通报, 2003, 48(15): 1693-1699.[58] Maher B A. Magnetic properties of some syntheticsub-micron magnetites. Geophysical Journal, 1988, 94:83-96.[59] 王建, 刘泽纯, 姜文英, 等. 磁化率与粒度、矿物的关系及其古环境意义. 地理学报, 1996, 51(2): 155-163.[60] 胡守云, 王苏民, Appel E, 等. 呼伦湖湖泊沉积物磁化率变化的环境磁学机制. 中国科学: D 辑, 1998, 28(4):334-339.[61] 王苏民, 吉磊. 呼伦湖晚第四纪湖相地层沉积学及湖面波动历史, 湖泊科学, 1995, 7(4): 297-306.[62] 崔之久, 唐元新, 李建江. 太白山佛爷池剖面的全新世环境变化信息. 地质力学学报, 2003, 9(4): 330-336.[63] 董元杰, 马玉增, 陈为峰. 坡面侵蚀土壤磁化率变化机理的研究. 土壤通报, 2008, 39(6): 1400-1403.[64] 马玉增, 董元杰, 史衍玺, 等. 坡面侵蚀土壤化学性质对磁化率影响机理的研究. 水土保持学报, 2008, 22(2):52-54. |
[1] | DENG Guofu, LI Mingqi. Advances of study on the relationship between tree-ring density and climate and climate reconstruction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 343-356. |
[2] | AO Xue, ZHAI Qingfei, CUI Yan, ZHOU Xiaoyu, SHEN Lidu, ZHAO Chunyu, Ning Xilong. Detection of urbanization effect on the climate change in Liaoning Province based on empirical orthogonal function methods [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1532-1543. |
[3] | SUN He, SU Fengge. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin [J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1126-1139. |
[4] | ZHANG Xuezhen, YIN Jun, BAI Mengxin, LI Yanbo, ZHENG Jingyun. Development and application test of a collection system for paleoclimate research documents from ResearchGate [J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1140-1148. |
[5] | ZHOU Meijun, LI Fei, SHAO Jiaqi, YANG Haijuan. Change characteristics of maize production potential under the background of climate change in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 443-453. |
[6] | SONG Zhen, SHI Xingmin. Path analysis of influencing factors of farmers’ adaptive behaviors to climate change in the rain-fed agricultural areas [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 461-473. |
[7] | CHEN Rui, YANG Meixue, WAN Guoning, WANG Xuejia. Soil freezing-thawing processes on the Tibetan Plateau: A review based on hydrothermal dynamics [J]. PROGRESS IN GEOGRAPHY, 2020, 39(11): 1944-1958. |
[8] | ZHANG Xuezhen, ZHENG Jingyun, HAO Zhixin. Climate change assessments for the main economic zones of China during recent decades [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1609-1618. |
[9] | YIN Shuiqing, WANG Wenting. A review on the stochastic simulation of rainfall process data for soil erosion assessment [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1747-1757. |
[10] | XIE Zhenghui, LIU Bin, YAN Xiaodong, MENG Chunlei, XU Xianli, LIU Yu, QIN Peihua, JIA Binghao, XIE Jinbo, LI Ruichao, WANG Longhuan, WANG Yan, CHEN Si. Effects of implementation of urban planning in response to climate change [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 120-131. |
[11] | Wei ZHANG, Qianyu TANG. Spatiotemporal characteristics and the environment of Quaternary glacier deposits in the middle Tenasserim Chain [J]. PROGRESS IN GEOGRAPHY, 2019, 38(6): 904-917. |
[12] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[13] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[14] | Wenbo ZHAO, Hongjie LIU, Xueting TIAN, Baolin LI, Weihong CAO. Environmental climate spatial pattern of Guangzhou City based on urban climatic map [J]. PROGRESS IN GEOGRAPHY, 2019, 38(3): 452-464. |
[15] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
|