PROGRESS IN GEOGRAPHY ›› 2012, Vol. 31 ›› Issue (3): 383-391.doi: 10.11820/dlkxjz.2012.03.015
LIU Guangxu1,2, DAI Erfu1, WU Shaohong1, WUWenxiang1
Received:
2011-10-01
Revised:
2012-02-01
Online:
2012-03-25
Published:
2012-03-25
LIU Guangxu, DAI Erfu, WU Shaohong, WUWenxiang. A Study on Theory and Method in Debris Flow Risk Assessment[J].PROGRESS IN GEOGRAPHY, 2012, 31(3): 383-391.
[1] 陈光曦, 王继康, 王林海. 泥石流防治. 北京: 中国铁道出版社, 1983. [2] 唐邦兴, 柳素清. 我国山地灾害及其防治. 山地研究, 1996, 14(2): 103-109. [3] 韩用顺, 崔鹏, 刘洪江, 等. 泥石流灾害风险评价方法及其应用研究. 中国安全科学学报, 2008, 18(12): 140-147. [4] 刘希林. 泥石流危险度判定的研究. 灾害学, 1988, 3 (3): 10-15. [5] 康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究. 北京: 科学出版社, 2004. [6] Blackwelder E. Mudflow as a geologic agent in semiarid mountains (with discussion by Joseph T. Singewald, jr.). Bulletin of the Geological Society of America, 1928, 39 (2): 465. [7] 中华人民共和国国家标准. 工程地质术语. in: 国家技术监督局, (Ed), GB-91, 1991. [8] 张国平, 徐晶, 毕宝贵. 滑坡和泥石流灾害与环境因子的关系. 应用生态学报, 2009, 20(3): 653-658. [9] 钱宁, 王兆印. 泥石流运动机理的初步探讨. 地理学报, 1984, 39(1): 1-33. [10] Bell R, Glade T. Quantitative risk analysis for landslides: Examples from Bíldudalur, NW-Iceland. Nat Hazards Earth Sci Syst, 2004, 4: 117-131. [11] 高庆华, 马宗晋, 张业成. 自然灾害评估. 北京: 气象出版社, 2007. [12] 葛全胜, 邹铭, 郑景云. 中国自然灾害风险综合评估初步研究, 北京: 科学出版社, 2008. [13] ISDR. Terminology of disaster risk reduction, 2004. [14] 刘希林, 唐川. 泥石流危险性评价. 科学出版社, 1995. [15] 胡封兵, 高甲荣, 陈子珊, 等. 泥石流风险评价. 灾害学, 2006, 21(3): 36-41. [16] 刘希林, 莫多闻. 泥石流风险评价. 成都/乌鲁木齐: 四川科学技术出版社, 2003. [17] 朱良峰, 张梁. 地质灾害风险分析与GIS 技术应用研究. 地理学与国土研究, 2002, 18(4): 10-13. [18] IUGS. Working group on landslides, committee on risk assessment, quantitative risk assessment for slopes and landslides: state of the art//Cruduen D M, Fell R (Eds). Proceedings International Workshop on Landslides Risk Assessment. Rotterdam: Balkema, 1997: 3-12. [19] Fell R. Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal/Revue Canadienne de Geotechnique, 1994, 31(2): 261-272. [20] Gentile F, Bisantino T, Trisorio L G. Debris-flow risk analysis in south Gargano watersheds (Southern-Italy). Nat Hazards, 2008, 44(1): 1-17. [21] 石菊松, 石玲, 吴树仁. 滑坡风险评估的难点和进展. 地质论评, 2007, 53(6): 797-806. [22] Johnson A M, Rahn P H. Mobilization of debris flows. Zeitschrift fur Geomorphologie, 1970, 9: 168-186. [23] Takahashi T. Debris flow on prismatic open channel. Journal of the Hydraulics Division, 1980, 106(3): 381-396. [24] Chen C. Generalized viscoplastic modeling of debris flow. Journal of hydraulic engineering, 1988, 114(3): 237-258. [25] O’brien J S, Julien P Y, Fullerton W T. Two-dimensional water flood and mudflow simulation. Journal of hydraulic engineering, 1993, 119(2): 244-261. [26] Iverson R M. The physics of debris flows. Reviews of Geophysics, 1997, 35(3): 245-296. [27] Blijenberg H M, De Graaf P J, Hendriks M R, et al. Investigation of infiltration characteristics and debris flow initiation conditions in debris flow source areas using a rainfall simulator. Hydrological Processes, 1996, 10(11): 1527-1543. [28] Major J J. Depositional processes in large-scale debris- flow experiments. The Journal of Geology, 1997, 105(3): 345-366. [29] Huang,\ X. A perturbation solution for Bingham-plastic mudflows. Journal of hydraulic engineering, 1997, 123: 986. [30] Huang X, Garcia M H. A Herschel-Bulkley model for mud flow down a slope. Journal of Fluid Mechanics, 1998, 374: 305-333. [31] Major J J, Iverson R M. Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins. Geological Society of America Bulletin, 1999, 111(10): 1424. [32] Hungr O. Analysis of debris flow surges using the theory of uniformly progressive flow. Earth surface processes and landforms, 2000, 25(5): 483-495. [33] Gregoretti C. The initiation of debris flow at high slopes: experimental results. Journal of Hydraulic Research, 2000, 38(2): 83-88. [34] Chen H, Lee C F. Numerical simulation of debris flows. Canadian Geotechnical Journal, 2000, 37(1): 146-160. [35] Imran J, Parker G, Locat J, et al. 1D numerical model of muddy subaqueous and subaerial debris flows. Journal of hydraulic engineering, 2001, 127(11): 959-968. [36] Parsons J D, Whipple K X, Simoni A. Experimental study of the grain-flow, fluid-mud transition in debris flows. The Journal of Geology, 2001, 109(4): 427-447. [37] Hearn G J. Landslide and erosion hazard mapping at Ok Tedi copper mine, Papua New Guinea. Quarterly Journal of Engineering Geology and Hydrogeology, 1995, 28(1): 47. [38] Alexander D. Natural disasters: A framework for research and teaching. Disasters, 1991, 15(3): 209-226. [39] Carrara A, Cardinali M, Detti R, et al. GIS techniques and statistical models in evaluating landslide hazard. Earth surface processes and landforms, 1991, 16(5): 427-445. [40] De Ploey J, Kirkby M J, Ahnert F. Hillslope erosion by rainstorms: A magnitude-frequency analysis. Earth surface processes and landforms, 1991, 16(5): 399-409. [41] Glade T. Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. environmental Geology, 1998, 35(2): 160-174. [42] Zarn B, Davies T R H. The significance of processes on alluvial fans to hazard assessment. Zeitschrift fur Geomorphologie, 1994, 38: 487-487. [43] Creek S. Debris Flow Study and Risk Mitigation Alternatives for Mackay Creek, 2003. [44] Jakob M. Debris-flow hazard analysis//Jakob M, Hungr O(Eds). Debris-flow hazards and related phenomena. Berlin: Springer, 2005: 411-443. [45] Hürlimann M, Copons R, Altimir J. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology, 2006, 78(3-4): 359-372. [46] Sigafoos R S. Botanical evidence of floods and floodplain deposition: US Geol. Survey Prof. Paper, 1964, 485. [47] Jackson L E. Dating and recurrence frequency of prehistoric mudflows near Big Sur, Monterey County, California. Journal of Research US Geological Survey, 1977, 5 (1): 17-32. [48] Shroder J F. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research, 1978, 9(2): 168-185. [49] Butler D R. Snow avalanche path terrain and vegetation, Glacier National Park, Montana. Arctic and Alpine Research, 1979, 11(1): 17-32. [50] Hupp C R. Dendrogeomorphic evidence of debris flow frequency and magnitude at Mount Shasta, California. environmental Geology, 1984, 6(2): 121-128. [51] Hupp C R, Osterkamp W R, Thornton J L. Dendrogeomorphic evidence and dating of recent debris flows on Mount Shasta, northern California. 1987. [52] Strunk H. Dendrogeomorphologische Methoden zur Ermittlung der Murfrequenz und Beispiele ihrer Anwendung. Roderer, 1995. [53] Jakob M, Weatherly H. Debris flow hazard and risk assessment, Jones Creek, Washington//Hungr O, Fell R, Couture R, et al., (Eds). Landslide Risk Management. London: Taylor & Francis, 2005: 533-541. [54] Mizuyama T, Kobashi S, Ou G. Prediction of debris flow peak discharge. Bern, Switzerland, 1992. [55] Jakob M. Morphometric and geotechnical controls of debris flow frequency and magnitude in southwestern British Columbia. National Library of Canada, 1996. [56] Tsao T C, Hsu W K, Cheng C T, et al. A preliminary study of debris flow risk estimation and management in Taiwan, Interpraevent 2010-International Symposium in Pacific Rim, Taibei, 2010: 930-939. [57] Jakob M, Weatherly H. Debris flow hazard and risk assessment, Jones Creek, Washington. Landslide risk management. Proceedings, 2005: 533-542. [58] 足立胜治, 德山九仁夫, 中筋章人. 石流发生危险度の 判定にやて. 新砂防, 1977, 30(3): 7-16. [59] 丁永建. 山区小流域洪水过程中泥沙搬运方式的初步研究. 地理学报, 1989, 44(4): 487-495. [60] Fuchu D, Lee C F, Sijing W. Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau Island, Hong Kong. Engineering Geology, 1999, 51(4): 279-290. [61] 程根伟. 山区暴雨泥石流风险估计及其发生规模预测. 中国科学: E 辑, 2003, 33(B12): 10-16. [62] 梁明贵. 泥石流沟严重程度的评定方法分析. 土壤侵蚀与水土保持学报, 1999, 5(5): 109-112. [63] 久保田哲也, 正务章, 板垣昭彦. 板垣昭彦.流域の任意地点における短时间降雨预测手法と土石流发生危险度判定图の开发. 新砂防, 1990, 42(6): 11-17. [64] Bughi S, Aleotti P, Bruschi R, et al. Slow movements of slopes interfering with pipelines: modelling and monitoring. Proceedings of 15th. International Conference of offshore mechanics and arctic engineering. Florence: 1996, 363-372. [65] Aleotti P, Baldelli P, Polloni G. Landsliding and flooding event triggered by heavy rains in the Tanaro basin (Italy). Proceedings International Congress Interpraevent 1996. Garmisch-Partenkirch, 1996: 435-446. [66] Leroi E. Landslide hazard-risk maps at different scales: objectives, tools and developments. 7th International Symposium on Landslides. Trondheim: 1996, 17-21. [67] 余宏明, 袁宏成, 唐辉明. 巴东县新城区冲沟泥石流危险度评价. 水文地质工程地质, 2003, 1: 47-49. [68] 苏经宇, 周锡元. 泥石流危险等级评价的模糊数学方法. 自然灾害学报, 1993, 2(2): 83-90. [69] 张跃, 宿芬, 邹寿平. 模糊数学方法及其应用. 北京: 煤炭工业出版社, 1992. [70] 唐川, 周钜乾. 云南崩塌滑坡危险度分区的模糊综合分析法. 水土保持学报, 1994, 8(4): 48-54. [71] 褚洪斌, 母海东, 王金哲. 层次分析法在太行山区地质灾害危险性分区中的应用. 中国地质灾害与防治学报, 2003, 14(3): 125-129. [72] 魏永明, 谢又予. 关联度分析法和模糊综合评判法在泥石流沟谷危险度划分中的应用. 自然灾害学报, 1998, 7 (2): 107-117. [73] 刘希林, 唐川. 中国山区沟谷泥石流危险度的定量判定法. 灾害学, 1993, 8(2): 1-7. [74] 张春山. 北京地区泥石流灾害危险性评价. 地质灾害与环境保护, 1995, 6(3): 33-40. [75] 李志斌, 郑成德. 滑坡, 泥石流危险度评判的灰色模式识别理论与模型. 系统工程理论与实践, 2000, 20(5): 128-132. [76] 汪明武. 基于神经网络的泥石流危险度区划. 水文地质工程地质, 2000, 27(2): 18-19. [77] 黄双, 李广杰, 陈伟韦. 基于人工神经网络的泥石流灾害危险性评价. 山西建筑, 2007, 33(3): 1-2. [78] Aleotti P, Baldelli P, De Marchi D. Le reti neurali nella valutazione della pericolosita` da frana. Geol Tec Ambient, 1996b, 4: 37-48. [79] Aleotti P, Baldelli P, Polloni G, et al. Different approaches to landslide hazard assessment//Sivakumar M C R. Proc 2nd Int Conf on Environmental Management (ICEM2), Elsevier,Wollongong, 1998: 3-10. [80] Lees B. Neural networks applications in the geosciences: An introduction. Comput Geosci, 1996, 22: 955-957. [81] 汪明武, 金菊良, 李丽. 投影寻踪新方法在泥石流危险度评价中的应用. 水土保持学报, 2002, 16(6): 79-81. [82] 邵颂东, 王礼先. 北京山区泥石流运动数值模拟及危险区制图. 北京林业大学学报, 1999, 21(6): 9-16. [83] 唐川, 朱静. GIS 支持下的滇西北地区泥石流灾害评价. 水土保持学报, 2001, 15(6): 84-87. [84] 闫满存, 王光谦, 刘家宏. GIS 支持的澜沧江下游区泥石流爆发危险性评价. 地理科学, 2001, 21(4): 334-338. [85] Guzzetti F, Carrara A, Cardinali M, et al. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 1999, 31(1-4): 181-216. [86] Hofmeister R J, Miller D J, Mills K A, et al. GIS overview map of potential rapidly moving landslide hazards in western Oregon. Portland: Department of Geology and Mineral Industries, 2002. [87] Lin P S, Lin J Y, Hung J C, et al. Assessing debris-flow hazard in a watershed in Taiwan. Engineering Geology, 2002, 66(3-4): 295-313. [88] 刘希林, 莫多闻. 泥石流易损度评价. 地理研究, 2002, 21(5): 569-577. [89] Pandey A C, Singh S K, Nathawat M S. Waterlogging and flood hazards vulnerability and risk assessment in Indo Gangetic plain. Nat Hazards, 2010(55): 273-289. [90] Glade T. Vulnerability assessment in landslide risk analysis. Die Erde (Beitrag zur Erdsystemforschung), 2003, 134(2): 123-146. [91] Leone F, Asté J P, Leroi E. Vulnerability assessment of elements exposed to mass-movement: Working toward a better risk perception. Trondheim, 1996. [92] Birkmann J. Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Environmental Hazards, 2007, 7(1): 20-31. [93] Fuchs S, Heiss K, Hübl J. Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazard Earth Sys, 2007, 7: 495-506. [94] 刘希林, 莫多闻, 王小丹. 区域泥石流易损性评价. 中国地质灾害与防治学报, 2001, 12(2): 7-12. [95] Anbalagan R, Singh B. Landslide hazard and risk assessment mapping of mountainous terrains--a case study from Kumaun Himalaya, India. Engineering Geology, 1996, 43(4): 237-246. [96] 金晓冬, 罗云. 区域社会经济“易灾性”综合评价实践. 灾害学, 1993, 8(4): 1-5. [97] 张业成. 云南省东川市泥石流灾害风险分析. 地质灾害与环境保护, 1995, 6(1): 25-34. [98] 尹之潜. 地震灾害损失预测的动态分析模型. 自然灾害学报, 1994, 3(2): 72-80. [99] 孙广仁, 毕海良. 模糊数学综合评判法在泥石流沟判别与危险度评价中的应用. 青海环境, 1997, 7(2): 72-77. [100] 汤家法, 谢洪. GIS 技术支持下的泥石流危险度区划研究: 以岷江上游为例. 四川测绘, 1999, 22(3): 120-122. [101] 白利平, 孙佳丽, 张亮, 等. 基于GIS的北京地区泥石流危险度区划. 中国地质灾害与防治学报, 2008, 19(2): 12-15. [102] Liping B, Yeyao W, Jiali S, et al. Application of extension theory in risk zoning of debris flow in Beijing. Global Geology, 2009, 12(1): 40-45. [103] 刘希林, 张松林, 唐川. 沟谷泥石流危险度评价研究. 水土保持学报, 1993, 7(3): 20-25. [104] 刘涌江, 胡厚田. 泥石流危险度评价的神经网络法. 地质与勘探, 2001, 37(2): 84-87. [105] Maskrey A. Disaster Mitigation: A Community Based Approach, Oxfam. Oxford: Oxfam, 1989. [106] Tobin G A, Montz B E. Natural hazards: Explanation and integration. New York: The Guilford Press, 1997. [107] IUGS. Quantitative Risk Assessment for Slopes and Landslides—the State of the Art. Balkerma: Rotterdam, 1997. [108] Deyle R E, French S P, Olshansky R B, et al. Hazard assessment: The factual basis for planning and mitigation, 1998. [109] Shook G. An assessment of disaster risk and its management in Thailand. Disasters, 1997, 21(1): 77-88. [110] 刘希林. 区域泥石流风险评价研究. 自然灾害学报, 2000, 9(1): 54-61. [111] 成玉祥, 任春林, 张骏. 基于BP神经网络的地质灾害风险评估方法探讨: 以天水地区为例. 中国地质灾害与防治学报, 2008, 19(2): 100-104. [112] 刘光旭, 吴文祥, 张绪教. 昆明市东川区泥石流风险性评价研究. 中国地质灾害与防治学报, 2008, 19(3): 29-33. [113] 史培军. 三论灾害研究的理论与实践. 自然灾害学报, 2002, 11(3): 1-9. [114] Okada N, Tatano H, Hagihara Y, et al. Integrated research on methodological development of urban diagnosis for disaster risk and its applications. Annuals of Disast. Prev. Res. Institute, Kyoto Univ, 2004: 1-8. [115] 叶金玉, 林广发, 张明锋. 自然灾害风险评估研究进展. 防灾科技学院学报, 2010, 12(3): 20-25. |
[1] | Hui WANG, Changchun SONG. Regional ecological risk assessment of wetlands in the Sanjiang Plain [J]. PROGRESS IN GEOGRAPHY, 2019, 38(6): 872-882. |
[2] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[3] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[4] | Ning ZHANG, Dawei WANG. Drug-related crime risk assessment and predictive policing based on risk terrain modeling [J]. PROGRESS IN GEOGRAPHY, 2018, 37(8): 1131-1139. |
[5] | Hui MENG, Chunyan LI, Ruolin ZHANG, Yamin LI. Risk assessment of geological hazards for counties and districts of the Beijing-Tianjin-Hebei region [J]. PROGRESS IN GEOGRAPHY, 2017, 36(3): 327-334. |
[6] | Haibo HU. Research progress of surging urban flood risks [J]. PROGRESS IN GEOGRAPHY, 2016, 35(9): 1075-1086. |
[7] | Peng CUI, Qiang ZOU. Theory and method of risk assessment and risk management of debris flows and flash floods [J]. PROGRESS IN GEOGRAPHY, 2016, 35(2): 137-147. |
[8] | FANG Weihua, LIN Wei. A review on typhoon wind field modeling for disaster risk assessment [J]. PROGRESS IN GEOGRAPHY, 2013, 32(6): 852-867. |
[9] | LI Ying, FANG Weihua. Review on modeling of tropical cyclone rainfall [J]. PROGRESS IN GEOGRAPHY, 2013, 32(4): 606-617. |
[10] | ZHANG Weixing, ZHOU Hongjian. Conceptual model of disaster chain risk assessment: Taking Wenchuan Earthquake on 12 May 2008 as a case [J]. PROGRESS IN GEOGRAPHY, 2013, 32(1): 130-144. |
[11] | LI Jiuyi, LI Lijuan, LIU Yumei, LIANG Liqiao, LI Bin. Framework for Water Scarcity Assessment and Solution at Regional Scales: A Case Study in Beijing-Tianjin-Tangshan Region [J]. PROGRESS IN GEOGRAPHY, 2010, 29(9): 1041-1048. |
[12] | ZHANG Xuexia, WU Peng, LIU Qiyong. Risk Assessment on Water Resource Utilization in the Songliao Basin by Spatial Cluster Analysis [J]. PROGRESS IN GEOGRAPHY, 2010, 29(9): 1032-1040. |
[13] | WEN Jiahong, YAN Jianping, YIN Zhan'e, MENG Qingjie, YIE Xinliang. Mainstreaming Disaster Risk Management in China [J]. PROGRESS IN GEOGRAPHY, 2010, 29(7): 771-777. |
[14] | GUO Zhixing,ZHONG Xingchun, FANG Weihua,CAO Xin,LIN Wei. The Research Advances of Wildfire Spreading and Wildfire Risk Assessment [J]. PROGRESS IN GEOGRAPHY, 2010, 29(7): 778-788. |
[15] | LI Na, GUO Huaicheng. Review of Risk Assessment of Phosphorus Loss Potential from Agricultural Non-point Source: Phosphorus Index [J]. PROGRESS IN GEOGRAPHY, 2010, 29(11): 1360-1367. |
|