PROGRESS IN GEOGRAPHY ›› 2012, Vol. 31 ›› Issue (3): 361-367.doi: 10.11820/dlkxjz.2012.03.012
Previous Articles Next Articles
LIAO Yongfeng1, NIE Chengjing2,3, YANG Linsheng2, Li Hairong2
Received:
2011-10-01
Revised:
2012-02-01
Online:
2012-03-25
Published:
2012-03-25
LIAO Yongfeng, NIE Chengjing, YANG Linsheng, Li Hairong. An Overview of the Risk Assessment of Flood Disaster[J].PROGRESS IN GEOGRAPHY, 2012, 31(3): 361-367.
[1] 张继权, 李宁. 主要气象灾害风险评估与管理的数量化方法及其应用. 北京: 北京师范大学出版社, 2007. [2] 王静爱, 史培军, 朱骊, 等. 中国沿海自然灾害及减灾对策. 北京师范大学学报: 自然科学版, 1995, 31(3): 104-109. [3] 孙绍骋. 灾害评估研究内容与方法探讨. 地理科学进展, 2001, 20(2): 122-130. [4] Gouldby B, Krzhizhanovskaya V, Simm J. Multiscale modelling in real-time flood forecasting systems: From sand grain to dike failure and inundation. Procedia Computer Science, 2010, 1(1): 809-809. [5] 黄崇福. 自然灾害风险评估理论与实践. 北京: 科学出版社, 2004. [6] 刘小艳, 孙娴. 气象灾害风险评估研究进展. 江西农业学报, 2009, 21(8): 123-125. [7] Makrey A. Disaster Mitigation: A Community Based Approach. Oxford: Oxfam Professional, 1989. [8] Smith K. Environmental Hazards: Assessing Risk and Reducing Disaster. New York: Routledge, 1996. [9] IUGS. Quantitative Risk Assessment for Slopes and Landslides: The State of the Art.//Cruden D M, Fell R. Landslide Risk Assessment, Balkema, Rotterdam, The Netherlands, 1997: 3-12. [10] Deyle R E, French S P, Olshansky R B. Hazard assessment: The factual basis for planning and mitigation//Burby R J. Cooperation with Nature: Confronting Natural Hazards with Land-Use Planning for Sustainable Communities. Washington D C: Joseph Henry Press, 1998: 116-119. [11] Hurst N W. Risk Assessment: The Human Dimension. Cambridge: The Royal Society of Chemistry, 1998. [12] 葛全胜, 邹铭, 郑景云, 等. 中国自然灾害风险综合评估初步研究. 北京: 科学出版社, 2008. [13] 张继权, 李宁. 主要气象灾害风险评估与管理的数量化方法及其应用. 北京: 北京师范大学出版社, 2007. [14] Waisurasingha C, Aniya M, Hirano A, et al. Application of remote sensing and GIS for improving rice production in flood-prone Areas: A case study in lower Chi-River Basin, Thailand. Jarq-Japan Agricultural Research Quarterly, 2008, 42(3): 193-201. [15] 周成虎. 洪涝灾害遥感监测研究. 地理研究, 1993, 12 (2): 63-68. [16] Pulvirenti L, Chini M, Pierdicca N, et al. Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sensing of Environment, 2011, 115(4): 990-1002. [17] Kuang K S C, Quek S T, Maalej M. Remote flood monitoring system based on plastic optical fibres and wireless motes. Sensors and Actuators A: Physical, 2008, 147(2): 449-455. [18] van Manen S E, and Brinkhuis M. Quantitative flood risk assessment for polders. Reliability Engineering & System Safety, 2005, 90(2/3): 229-237. [19] Kasperson J X, Kasperson R E, Turner B L. Regions at Risk: Comparisons of Threatened Environments. Tokyo, New York, Paris: United Nations University Press, 1995. [20] Anselmoa V, Galeatib G, Palmieri S, et al. Flood risk assessment using an integrated hydrological and hydraulic modeling approach: A case study. Journal of Hydrology, 1996, 175(1-4): 533-554. [21] Davidson R A, Lamber K B. Comparing the hurricane disaster risk of U. S. coastal counties. Natural Hazards Review, 2001, 2(3): 132-142. [22] 周寅康. 自然灾害风险评估初步研究. 自然灾害学报, 1995, 4(1): 6-11. [23] Martinelli L, Zanuttigh B, and Corbau C. Assessment of coastal flooding hazard along the Emilia Romagna littoral, IT. Coastal Engineering, 2010,57(11-12): 1042-1058. [24] 蒋卫国, 李京, 陈云浩, 等. 区域洪水灾害风险评估体系 (I): 原理与方法. 自然灾害学报, 2008, 17(6): 53-59. [25] Robins C R, Buck B J, Williams A J, et al. Comparison of flood hazard assessments on desert piedmonts and playas: A case study in Ivanpah Valley, Nevada. Geomorphology, 2009, 103(4): 520-532. [26] Mazzorana B, Comit, F, Volcan C, et al. Determining flood hazard patterns through a combined stochastic-deterministic approach. Natural Hazards, 2011, 59(1): 301-316. [27] 李海萍, 彭望录, 赵济. 黄淮海平原历史早涝灾害的时间序列分析. 北京师范大学学报: 自然科学版, 1995, 31 (4): 549-559. [28] 陈家其. 从太湖流域1991 年6-7 月特大洪涝论水旱规律研究的应用性. 地理学报, 1992, 47(1): 1-5. [29] Xia J Q, Falconer R A, Lin B L, et al. Numerical assessment of flood hazard risk to people and vehicles in flash floods. Environmental Modelling & Software, 2011, 26 (8): 987-998. [30] 王建华. 基于模糊综合评判法的洪水灾害风险评估. 水利科技与经济, 2009, 15(4): 338-340. [31] 罗培. 基于GIS 和模糊评估法的重庆洪涝灾害风险区划. 西华师范大学学报: 自然科学版, 2007, 28(2): 165-171. [32] 胡亦知. 基于历史资料分析的台风水灾智能预警系统研究. 水文, 2009, 29(4): 47-51. [33] Jain S K, Singh R D, Jain M K, et al. Delineation of flood-prone areas using remote sensing techniques. Water Resources Management, 2005, 19(4): 333-347. [34] 张继权, 李宁. 主要气象灾害风险评估与管理的数量化方法及其应用. 北京: 北京师范大学出版社, 2007. [35] Sharma C S, Behera M D, Mishra A, et al. Assessing flood induced land-cover changes using remote sensing and fuzzy approach in Eastern Gujarat (India). Water Resources Management, 2011, 25(13): 3219-3246. [36] Marti-Cardona B, Lopez-Martinez C, Dolz-Ripolles J, et al. ASAR polarimetric, multi-incidence angle and multitemporal characterization of Do?ana wetlands for flood extent monitoring. Remote Sensing of Environment, 2010, 114(11): 2802-2815. [37] Proud S R, Fensholt R, Rasmussen L V, et al. Rapid response flood detection using the MSG geostationary satellite. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(4): 536-544. [38] 徐关, 黄诗峰, 李纪人. RS与GIS 技术支持下的2003 年淮河流域洪涝灾害快速监测与评估. 水利水电技术, 2004, 35(5): 83-86. [39] Dyke G, Gill S, Davies R, et al. Dream project: Applications of earth observations to disaster risk management. Acta Astronautica, 2011, 68(1-2): 301-315. [40] Zhou Y X, Liu G J, Fu E J, et al. An object-relational prototype of GIS-based disaster database. Procedia Earth and Planetary Science, 2009, 1(1): 1060-1066. [41] 戴昌达. 应用航天遥感技术监测评估洪涝灾情. 中国航天, 1996, (2): 8-12. [42] 潘世兵, 李纪人. 遥感技术在水利领域的应用. 中国水利, 2008(21): 63-66. [43] Guo H D. Space borne and airborne SAR for target detection and flood monitoring. Photogrammetric Engineering & Remote Sensing, 2000, 66(5): 611-617. [44] 魏成阶, 王世新. 1998 年全国洪涝灾害遥感监测评估的主要成果: 基于网络的洪涝灾情遥感速报系统的应用. 自然灾害学报, 2000, 9(2): 16-25. [45] 张晓虎. 卫星监测台风信息处理系统. 应用气象学报, 2003, 14(4): 505-509. [46] 曾明剑, 于波, 周曾奎, 等. 台风业务应用和预警系统简介. 气象科学, 2007, 27(4): 451-456. [47] 江春发, 王仁谦. 用GIS技术建立台风跟踪预警系统. 华侨大学学报: 自然科学版, 2003, 24(1): 60-63. [48] Kuang K S C, Quek S T, Maalej M. Remote flood monitoring system based on plastic optical fibres and wireless motes. Sensors and Actuators A: Physical, 2008, 147(2): 449-455. [49] Klemp, J B, Skamarock W C, Dudhia J. Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Monthly Weather Review, 2007, 135(8): 2897-2913. [50] 章国材, 娇梅燕, 李延香, 等. 现代气象预报技术和方法. 北京: 气象出版社, 2007. |
[1] | GUO Qian, LIAO Heping, WANG Ziyi, LIU Yuanli, LI Tao. Measurement of rural poverty alleviation sustainability and return-to-poverty risk identification in Qinling-Bashan Mountains:A case study of Chengkou County, Chongqing Municipality [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 232-244. |
[2] | XUE Qian, XIE Miaomiao, GUO Qiang, WANG Yanan, WU Rongrong, LIU Qi. Research progress on urban heat wave vulnerability assessment: A geographical perspective [J]. PROGRESS IN GEOGRAPHY, 2020, 39(4): 685-694. |
[3] | XIONG Chenran, WANG Limao, QU Qiushi, XIANG Ning, WANG Bo. Progress and prospect of geopolitical risk research [J]. PROGRESS IN GEOGRAPHY, 2020, 39(4): 695-706. |
[4] | NING Siyu, HUANG Jing, WANG Zhiqiang, WANG Huimin. Indirect economic losses of flood disaster based on an input-output model: A case study of Hubei Province [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 420-432. |
[5] | LIU Di, CHEN Hai, GENG Tianwei, ZHANG Hang, SHI Qinqin. Spatiotemporal changes of regional ecological risks in Shaanxi Province based on geomorphologic regionalization [J]. PROGRESS IN GEOGRAPHY, 2020, 39(2): 243-254. |
[6] | XIE Yongshun, WANG Chengjin, HAN Zenglin, LIU Shuzhou. Structural resilience evolution of multiple urban networks in the Harbin-Dalian urban belt [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1619-1631. |
[7] | Hui WANG, Changchun SONG. Regional ecological risk assessment of wetlands in the Sanjiang Plain [J]. PROGRESS IN GEOGRAPHY, 2019, 38(6): 872-882. |
[8] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[9] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[10] | Ning ZHANG, Dawei WANG. Drug-related crime risk assessment and predictive policing based on risk terrain modeling [J]. PROGRESS IN GEOGRAPHY, 2018, 37(8): 1131-1139. |
[11] | Qian LI, Haiyang YU, Ting LI, Shuang LONG, Wei SHAO, Ying WANG, Yingjun XU. Hazard assessment of typhoons affecting the Beijing-Tianjin-Hebei region based on Gumbel distribution [J]. PROGRESS IN GEOGRAPHY, 2018, 37(7): 933-945. |
[12] | Lingbo XIAO. Spatiotemporal distribution of high flood risk areas in China, 1736-1911 [J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 495-503. |
[13] | Wenwu ZHAO, Yue LIU, Qiang FENG, Yaping WANG, Siqi YANG. Ecosystem services for coupled human and environment systems [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 139-151. |
[14] | Shaohong WU, Jiangbo GAO, Haoyu DENG, Lulu LIU, Tao PAN. Climate change risk and methodology for its quantitative assessment [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 28-35. |
[15] | Ke CAO, Zhifeng ZHANG, Hongwei MA, Zhengxian YANG, Anning SUO. Capacity for resource exploitation based on marine functional zones: A case study in the Tianjin-Hebei coastal area [J]. PROGRESS IN GEOGRAPHY, 2017, 36(3): 320-326. |
|