[1] Mclntyre S, Lavorel S, Landsberg J, et al. Disturbanceresponse in vegetation towards a global perspective onfunctional traits. Journal of Vegetation Science, 1999, 10(5): 621-630.[2] Körner C, Farquhar G D, Wong S C. Carbon isotope discriminationby plants follows latitudinal and altitudinaltrends. Oecologia, 1991, 88(1): 30-40.[3] 傅抱璞. 山地气候. 北京: 科学出版社, 1983.[4] Cordell S G, Goldstein F C, Meinzer P M, et al. Regulationof leaf life-span and nutrient-use efficiency of Metrosideropolymorpha trees at two extremes of a long chronosequencein Hawaii. Oecologia, 2001, 127(2): 198-206.[5] Farquhar G D, Richards R A. Isotopic composition ofplant carbon correlates with water-use efficiency ofwheat genotypes. Australian Journal of Plant, 1984, 11(6): 539-552.[6] Körner C, Farquhar G D, Roksandic Z. A global surveyof carbon isotope discrimination in plants from high altitude.Oecologia, 1988, 74(4): 623-632.[7] Gower S T, Reich P B, Son Y. Canopy dynamics andaboveground production of five tree species with differentleaf longevities. Tree Physiology, 1993, 12(4):327-345.[8] Reich P B, Oleksyn J, Modrzynski J, et al. Evidence thatlonger needle retention of spruce and pine populations athigh elevations and high latitudes in largely a phenotypicresponse. Tree Physiology, 1996, 16(1): 643-645.[9] Luo J X, Zang R G, Li C Y. Physiological and morphologicalvariations of Picea asperata populations originatingfrom different altitudes in mountains of southwestern China.Forest Ecology and Management, 2006, 221(1-3):285-290.[10] Boratynski A, Jasinska A, Boratyska K, et al. Life span ofneedles of Pinus Mugo turra: Effect of altitude and speciesorigin. Polish Journal of Ecology, 2009, 57(3):567-572.[11] Ewers F W, Schmid R. Longevity of needle fascicles ofPinus longaeva (Bristlecone pine) and other North Americanpines. Oecologia, 1981, 51(19): 107-115.[12] Diemer M, Körner Ch, Silvia Prock. Leaf life spans inwild perennial herbaceous plants: A survey and attemptsat a functional interpretation. Oecologia, 1992, 89(1):10-16.[13] Takahashi K, Miyajima Y. Relationships between leaf lifespan, leaf mass per area, and leaf nitrogen cause differentaltitudinal changes in leaf δ13C between deciduous and evergreenspecies. Botany, 2008, 86(11): 1233-1241.[14] Reich P B, Walters M B, Ellsworth D S. Leaf life-span inrelation to leaf, plant, and stand characteristics among diverseecosystems. Ecological Monograph, 1992, 62(3):365-392.[15] Reich P B, Waiters M B, Ellsworth D S. Leaf life-span asa determinant of leaf structure and function among 23tree species in Amazonian forest communities. Oecologia,1991, 86(1): 16-24.[16] Reich P B, Waiters M B, Ellsworth D S, et al. Relationshipsof leaf dark respiration to leaf nitrogen, specificleaf area and leaf life-span: A test across biomes and functionalgroups. Oecologia, 1998, 114(4): 471-482.[17] Körner. The nutritional status of plants from high altitudes,A worldwide comparison. Oecologia, 1989, 81(3):379-391.[18] He J S, Wang Z H, Wang X P, et al. A test of generality ofleaf trait relationship on the Tibetan Plateau. New Phytologist,2006, 170(4): 377-385.[19] Wright I J, Westoby M, Reich P B. Convergence towardshigher leaf mass per area in dry and nutrient-poor habitatshas different consequences for leaf life span. Journalof Ecology, 2002, 90(3): 534-543.[20] Hultine K R, Marshall J D. Altitude trends in conifer leafmorphology and stable carbon isotope composition.Oecologia, 2000, 123(1): 32-40.[21] Vitousek P M, Field C B, Matson P A. Variation in foliar13C in Hawaiian Metrosideros polymorpha: A case of internalresistance? Oecologia, 1990, 84(3): 362-370.[22] Kogami H, Hanba Y T, Kibe T, et a1. CO2 transfer conductance,leaf structure and carbon isotope compositionof Polygonum cuspidatum leaves from low and high altitudes.Plant,Cell and Environment, 2001, 24(5): 529- 538.[23] Luo T X, Luo J, Pan Y D. Leaf traits and associated ecosystemcharacteristics across subtropical and timberlineforests in the Gongga Mountain, Eastern Tibetan Plateau.Oecologia, 2005, 142(3): 261-273.[24] Cordell S, Goldstein G, Mueller-Dombois D, et a1. Physiologicaland morphological variation in Metrosiderospolymorpha,a dominant Hawaiian tree species,along analtitudinal gradient: The role of phenotypic plasticity.Oecologia, 1998, 113(2): 1l8-196.[25] Körner C H, Bannister P, Mark A F. Altitude variation instomatal conductance, nitrogen content and leaf anatomyin different plant life forms in New Zealand. Oecologia,1986, 69(4): 577-588.[26] Morecroft M D, Woodward F I, Marrs R H. Altitudinaltrends in leaf nutrient contents, leaf size and of Alchemillaalpine. Functional Ecology, 1992, 6(6): 730-740.[27] Körner C H, Diemer M. In situ photosynthetic responsesto light, temperature and carbon dioxide in herbaceousplants from low and high altitude. Functional Ecology,1987, 1(3): 179-194.[28] Wright I J, Reich P B, Cornelissen H C. Assessing thegenerality of global leaf trait relationships. New phytologist,2004, 485-496.[29] Mooney H A, Strain B R, Marda W. Photosynthetic efficiencyat reduced carbon dioxide tensions. Ecology,1966, 47(3): 490-491.[30] 卢存福, 贲桂英. 高海拔地区植物的光合特性. 植物学通报, 1995, 12(2): 38-42.[31] Nobel P S, Israel AA. Cladode development, environmentalresponses of CO2 uptake, and productivity for Opuntiaficus-indica under elevated CO2. Journal of ExperimentalBotany, 1994, 45(3): 295-303.[32] Morecroft M D, Woodward F I. Experimental investigationson the Environmental determination of 13C at differentaltitudes. Journal of Experimental Botany, 1990, 41(10): 1303-1308.[33] Friend A D, Woodward F I, Switsur V R. Field measurementsof photosynthesis, stomatal conductance, leaf nitrogenand 13C along altitudinal gradients in Scotland. FunctionalEcology, 1989, 3(1): 117-122.[34] Marshall J D, Zhang J. Carbon isotope discrimination andwater-use efficiency in native plants of the North-CentralRockies. Ecology, 1994, 75(7): 1887-1895.[35] Kloeppel B D, Gower S T, Treichel I W, et al. Foliarcarbonisotope discrimination in Larix species and sympatricevergreen conifers: A global comparison. Oecologia,1998, 114(2): 153-159.[36] 史作民, 程瑞梅, 刘世荣. 高山植物叶片13C的海拔响应及其机理. 生态学报, 2004, 12(12): 2901-2905.[37] 胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展. 生态学报, 2009, 29(3): 1498-1507.[38] Condon A G, Richards R A, Rebetzke G J, et al. Breedingfor high water-use efficiency. Journal of ExperimentalBotany, 2004, 407(55): 2447-2460.[39] Baldocehi D A. Comparative study of mass and energyexchange over a closed C3 (wheat) and an open C4 (corn)crop. II: CO2, exchange and water use efficiency. Agriculturaland Forest Meteorology, 1994, 67(3-4): 291-321.[40] 李荣生, 许煌灿, 尹光天, 等. 植物水分利用效率的研究进展. 林业科学研究, 2003, 16(3): 366-371.[41] Jone D H, Zhang J W. Carbon isotope discrimination andwater-use efficiency in native plants of the morth centralrockies. Ecology, 1994, 75(7): 1887-1895.[42] Hubick K T, Farquhar G D, Shorter R. Correlation betweenwater-use efficiency and carbon isotope discriminationin diverse peanut (Arachis) Germplasm. AustralianJournal of Plant Physiology, 2002, 13(6): 803-816..[43] Delucia E H, Schiesinger W H. Resource fuse efficiencyand drought tolerance in adjacent great basin and sierranPlants. Ecology, 2001, 72 (1): 51-58.[44] Luo T X, Zhang L, Zhu H Z, et al. Correlations betweennet primary productivity and foliar carbon isotope ratioacross a Tibetan ecosystem transect. Ecography, 2009, 32(3): 526-538.[45] Song M H, Duan D Y, Chen H, et al. Leaaf δ13C reflectsecosystem patterns and responses of alpine plants to theenvironments on the Tibetan Plateau. Ecography, 2008,31(4): 499-508.[46] Wang G H, Ni J. Responses of plant functional types toan environmental gradient on the Northeast China Transect.Ecological Research, 2005, 20(5): 563-572.[47] Wiemann M C, Dilcher D L, Manchester S R. Estimationof mean annual temperature from leaf and wood physiognomy.Forest Science, 2001, 47(2): 141-149.[48] Jauffret S, Visser M. Assigning life-history traits to plantspecies to better quality arid land degradation in PresaharianTuniaisa. Journal of Arid Environments, 2003, 55(1):1-28. |