[1] 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量及其应 用. 北京: 气象出版社, 2006: 54-61.
[2] 陈国潮, 何振立, 黄昌勇. 土壤微生物生物量C周转及其 研究. 土壤学报, 2002, 39(2): 153-159.
[3] Compton J E, Watrud L S, Porteous L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecology and Management, 2004, 196(1): 143-158.
[4] Zhong W H, Cai Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied Soil Ecology, 2007, 36(2-3): 84-91.
[5] Boxman AW, Blanck K, Brandrud T E, et al. Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecology and Management, 1998, 101(1-3): 65-79.
[6] Fisk M C, Fahey T J. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry, 2001, 53(2): 201-223.
[7] Wang Q K, Wang S L, Liu Y X. Responses to N and P fertilization in a young Eucalyptus dunnii plantation: Microbial properties, enzyme activities and dissolved organic matter. Applied Soil Ecology, 2008, 40(3): 484-490.
[8] Joergensen R G, Potthoff M. Microbial reaction in activity, biomass, and community structure after long-term continuous mixing of a grassland soil. Soil Biology & Biochemistry, 2005, 37(7): 1249-1258.
[9] Johnson D, Leake J R, Read D J. Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonization in upland grassland. Plant and Soil, 2005, 271(1-2): 157-164.
[10] 黄靖宇, 宋长春, 宋艳宁, 等. 湿地垦殖对土壤微生物量 及土壤溶解有机碳、氮的影响. 环境科学, 2008, 29(5): 1380-1387.
[11] Zhang W J, Parker K M, Luo Y Q, et al. Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 2005, 11(2): 266-277.
[12] Potthoff M, Steenwerth K L, Jackson L E, et al. Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology & Biochemistry, 2006, 38(7): 1851-1860.
[13] 齐玉春, 董云社, 耿元波, 等. 我国草地生态系统碳循环 研究进展. 地理科学进展, 2003, 22(4): 342-352.
[14] 姚拓, 马丽萍, 张德罡. 我国草地土壤微生物生态研究进 展及浅评. 草业科学, 2005, 22(11): 1-7.
[15] 谷雪景, 赵吉, 王娟. 内蒙古典型草原土壤微生物生物量 研究. 农业环境科学学报, 2007, 26(4): 1444-1448.
[16] 郭继勋, 祝延成, 马文明, 等. 东北羊草草原土壤微生物 与生态环境的关系. 草地学报, 1996, 4(4): 240-245.
[17] 王启兰, 曹广民, 王长庭. 高寒草甸不同植被土壤微生物 数量及微生物生物量的特征. 生态学杂志, 2007, 26 (7): 1002-1008.
[18] 杨成德, 龙瑞军, 陈秀蓉, 等. 东祁连山高寒草甸土壤微 生物量及其与土壤物理因子相关性特征. 草业学报, 2007, 16(4): 62-68.
[19] 吕秀华. 东北羊草草原不同生境土壤微生物生物与土壤 理化性质关系研究 [D]. 长春: 东北师范大学, 2003: 15-18.
[20] 陈珊, 张常钟, 刘东波, 等. 东北羊草草原土壤微生物生 物量的季节变化及其与土壤生境的关系. 生态学报, 1995, 15(1): 91-94.
[21] Alvarez R, Santanatoglia O J , Garcia R. Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems. Biology and Fertility of Soils, 1995, 19(2-3): 227-230.
[22] Garcia F O, Rice C W. Microbial biomass dynamics in tallgrass prairie. Soil Science Society of America Journal, 1994, 58(3): 816-823.
[23] 赵先丽, 程海涛, 吕国红, 等. 土壤微生物生物量研究进 展. 气象与环境学报, 2006, 22(4): 95-99.
[24] Contin M, Corcimaru S, Nobili M De, et al. Temperature changes and the ATP concentration of the soil microbial biomass. Soil Biology & Biochemistry, 2000, 32(8-9): 1219-1225.
[25] Killham K. Soil Ecology. Cambridge: Cambridge University Press, 1994: 13-14.
[26] 王慧春, 赵修堂, 王启兰. 青海高寒草甸不同植被土壤微 生物生物量的测定. 青海草业, 2006, 15(4): 2-5.
[27] 吴建国, 艾丽. 祁连山3 种典型生态系统土壤微生物活 性和生物量碳氮含量. 植物生态学报, 2008, 32(2): 465-476.
[28] 张崇邦, 刘士山, 杨靖春. 东北羊草草原环境因素对微生 物生物量影响的灰色分析. 中国草地, 1996, 18(1): 10-14.
[29] Rosacker L L, Kieft T L. Biomass and adenylate energy charge of a grassland soil during drying. Soil Biology & Biochemistry, 1990, 22(8): 1121-1127.
[30] Xiang S R, Doyle A, Holden P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology & Biochemistry, 2008, 40(9): 2281-2289.
[31] Scheu S, Parkinson D. Changes in bacterial and fungal bio-volume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Biology & Biochemistry, 1994, 26(11): 1515 -1525.
[32] Wu J, Brookes P C. The proportional mineralization of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biology & Biochemistry, 2005, 37(3): 507-515.
[33] Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews of the Cambridge Philosophical Society, 1992, 67(3): 321-358.
[34] 康健. 贺兰山西坡不同草地类型土壤微生物碳-氮特征 [D]. 兰州: 兰州大学, 2006: 26-28.
[35] Bardgett R D, Jones A C, Jones D L, et al. Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology & Biochemistry, 2001, 33(12-13): 1653-1664.
[36] Pietri J C A, Brookes P C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biology & Biochemistry,2008, 40(7): 1856-1861.
[37] Wardle D A. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biology & Biochemistry, 1998, 30(13): 1627-1637.
[38] Chen G C, He Z L, Wang Y J. Impact of pH on microbial biomass carbon and microbial biomass phosphorus in red soil. Pedosphere, 2004, 14(1): 9-15.
[39] Dakhah M, Gifford G F. Influence of vegetation, rock cover and trampling on infiltration rates and sediment production. Water Resource Bul1, 1980, l6(6): 979-986.
[40] Krzic M, Broersma K, Thompson D J, et al. Soil properties and species diversity of grazed crested wheatgrass and native rangelands. Range Management, 2000, 53(3): 353-358.
[41] 马秀枝, 王艳芬, 汪诗平, 等. 放牧对内蒙古锡林河流域 草原土壤碳组分的影响. 植物生态学报, 2005, 29(4): 569-576.
[42] Holt J A. Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Applied Soil Ecology, 1997, 5(2): 143-149.
[43] 王启兰, 王长庭, 杜岩功, 等. 放牧对高寒嵩草草甸土壤 微生物量碳的影响及其与土壤环境的关系. 草业学报, 2008,17(2): 39-46.
[44] Shrestha G, Stahl P D. Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term grazing exclusion. Agriculture, Ecosystems and Environment. 2008, 125(1-4): 173-181.
[45] Raiesi F, Asadi E. Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biology Fertility of Soils, 2006, 43(1): 76-82.
[46] Northup B K, Brown J R, Holt J A. Grazing impacts on the spatial distribution of soil microbial biomass around tussock grasses in a tropical grassland. Applied Soil Ecology, 1999, 13(3): 259-270.
[47] 张蕴薇, 韩建国, 韩永伟, 等. 不同放牧强度下人工草地 土壤微生物量碳、氮的含量. 草地学报, 2003, 11(4): 343-346.
[48] 张蕴薇. 放牧强度对土壤物理性质的影响. 草地学报, 2002, 10(1): 73-75.
[49] Wang K H, McSorleya R, Bohlenb P, et al. Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures. Soil Biology & Biochemistry, 2006, 38(7): 1956-1965.
[50] Bardgett R D, Hobbs P J, Frosteg?rd ?sa. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 1996, 22(3): 261-264.
[51] Kieft T L. Grazing and plant-canopy effects on semiarid soil microbial biomass and respiration. Biology Fertility of Soils, 1994, 18(2): 155-162.
[52] Moussa A S, Rensburg L A, Kellner K, et al. Soil microbial biomass in semi-arid communal sandy rangelands in the Western Bophrima district, South Africa. Applied Ecology and Environmental Research, 2007, 5(1): 43-56.
[53] Milchunas D G, Lauenroth W K. A quantitative assessment of the effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs. 1993, 63(4): 327-366.
[54] 高英志, 韩兴国, 汪诗平. 放牧对草原土壤的影响. 生态 学报, 2004, 24(4): 790-797.
[55] 李凌浩. 土地利用变化对草原生态系统土壤碳贮量的影 响. 植物生态学报,1998, 22(4): 300-302.
[56] Lal R, Kimele J, Follett R. Land use and soil C pool in terrestrial ecosystem//Stewart B A. Management of Carbon Sequestration in Soil. Boca Ration: CRC Press, Fla, USA, 1998: 1-10.
[57] 樊江文, 钟华平, 员旭疆. 50 年来我国草地开垦状况及其 生态影响. 中国草地, 2002, 24(5): 69-72.
[58] Dvidson E A, Ackerman I L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 1993, 20(3): 181-l98.
[59] 平立凤, 窦森, 张晋京, 等. 草原及开垦后土壤有机质性 质研究. 应用生态学报, 2004, 15(5): 824-826.
[60] 王百群, 苏以荣, 吴金水. 开垦草地对土壤有机碳库构成与来源的效应. 核农学报, 2007, 21(6): 618-622.
[61] Jones M B, Donnelly A. Carbon sequestration in temperate grassland ecosystem and the influence of management, climate and elevated CO2. New Phytologist, 2004, 164(3): 423-439.
[62] Hatch D J, Lovell R D, Antil R S, et al. Nitrogen mineralization and microbial activity in permanent pastures amended with nitrogen fertilizer or dung. Biology Fertility of Soils, 2000, 30(4): 288-293.
[63] Lovell R D, Hatch D J. Stimulation of microbial activity following spring application of nitrogen. Soil Biology & Biochemistry, 1998, 26(1): 28-30.
[64] Dijkstra F A, Hobbie S E, Reich P B, et al. Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant and Soil, 2005, 272(1-2): 41-52.
[65] Liu W X, Xu W H, Han Y, et al. Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe. Biology Fertility of Soils, 2007, 44(2): 259-268.
[66] Lovell R D, Jarvis S C, Bardgett R D. Soil microbial biomass and activity in long-term grassland: Effects of management changes. Soil Biology & Biochemistry, 1995, 27 (7): 969-975.
[67] Wallenstein M D, McNulty S, Fernandez I J, et al. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management, 2006, 222(1-3): 459-468.
[68] Tietema A. Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient. Forest Ecology and Management, 1998, 101(1-3): 29-36.
[69] Hopkins D W, Shiel R S. Size and activity of soil microbial communities in long-term experimental grassland plots treated with manure and inorganic fertilizers. Biological Fertility of Soils, 1996, 22(1-2): 66-70.
[70] DeForest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America, 2004, 68(1): 132-138.
[71] Zhang N L, Wan S Q, Li L H, et al. Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China. Plant Soil, 2008, 311(1-2): 19-28.
[72] 张彦东, 孙志虎, 沈有信. 施肥对金沙江干热河谷退化草 地土壤微生物的影响. 水土保持学报, 2005, 19(2): 88-91.
[73] Zhang Q S, Zak J C. Effects of water and nitrogen amendment on soil microbial biomass and fine root production in a semi-arid environment in west Texas. Soil Biology & Biochemistry, 1998, 30(1): 39-45.
[74] Lovell R D, Jarvis S C. Effect of cattle dung on soil microbial biomass C and N in a permanent treatments stored under controlled conditions. Soil Biology & Biochemistry, 1996, 28(3): 291-299.
[75] Johnson D, Leake J R, Lee J A, et al. Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands. Environmental Pollution, 1998, 103(2-3): 239-250.
[76] IPCC. Climate Change 2001. The Scientific Basis// Houghton J T, Ding Y, Griggs D J, et al. The Carbon Cycle and Atmospheric Carbon Dioxide. Cambridge: Cambridge University Press, 2001: 185-237.
[77] Bruce K D, Jones T H, Bezemer T M, et al. The effect of elevated atmospheric carbon dioxide levels on soil bacterial communities. Global Change Biology, 2000, 6(4): 427-434.
[78] Drissner D, Blum H, Tscherko D, et al. Nine years of enriched CO2 changes the function and structural diversity of soil microorganisms in a grassland. European Journal of Soil Science, 2007, 58(1): 260-269.
[79] Kandeler E, Mosier A R, Morgan J A, et al. Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biology & Biochemistry, 2006, 38(8): 2448-2460.
[80] Rice C W, Garcia F O, Hampton C O, et al. Soil microbial response in tallgrass prairie to elevated CO2. Plant and Soil, 1994, 165(1): 67-74.
[81] Williams M A, Rice C W, Owensby C E. Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant and Soil, 2000, 227(1-2): 127-137.
[82] K?rner C, Diemer M, Sch?ppi B, et al. The responses of alpine grassland to four seasons of CO2 enrichment: A synthesis. Acta Oecologica, 1997, 18(3): 165-175.
[83] 牛淑丽, 韩兴国, 马克平, 等. 全球变暖与陆地生态系统 研究中的野外增温装置. 植物生态学报, 2007, 31(2): 262-271.
[84] Belay-Tedla A, Zhou X H, So B, et al. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biology & Biochemistry, 2009, 41(1): 110-116.
[85] Liu W X, Zhang Z, Wan S Q. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 2009, 15(1): 184-195.
[86] 罗艳. 土壤微生物对大气CO2浓度升高的响应. 生态环 境, 2003, 12(3): 357-360.
[87] Oijen M V, Schapendonk A H C M, Jansen M J H, et al. Do open-top chambers overestimate the effects of rising CO2 on plants? An analysis using spring wheat. Global Change Biology, 1999, 5(4): 411-421.
|