[1] Lam N S N. Spatial Interpolation Methods: A Review. American Cartographer, 1983, 10(2): 129-149.
[2] Myers D E. Spatial Interpolation: An Overview. 1st Conference of the Working-Group-on-Pedometrics of the International-Society-of-Soil-Science - Pedometrics-92: Developments in Spatial Statistics for Soil Science, Wageningen, Netherlands, 1992.
[3] Jeffrey S J, Carter J O, Moodie K B, et al. Using Spatial Interpolation to Construct a Comprehensive Archive of Australian Climate Data. Environmental Modelling & Software, 2001, 16(4): 309-330.
[4] 侯景儒, 肖斌, 赵鹏大. 地质统计学新进展. 地球科学进展, 2000, 15(3): 293-296.
[5] 柏延臣, 孙英君, 王劲峰. 地统计学方法进展研究. 地球科学进展, 2004, 19(2): 268-274.
[6] 刀谞, 郭怀成, 周丰. 地统计方法学研究进展. 地理研究, 2008, 27(5): 1191-1202.
[7] Dowd P A. A Review of Recent Developments in Geostatistics. Computers & Geosciences, 1991, 17(10): 1481-1500.
[8] Goovaerts P. Geostatistics for Natural Resources Evalu-ation. New York: Oxford University Press, 1997.
[9] Juang K W, Lee D Y. A Comparison of Three Kriging Methods Using Auxiliary Variables in Heavy-Metal Contaminated Soils. Journal of Environmental Quality, 1998, 27(2): 355-363.
[10] 姜勇, 李琪, 张晓珂,等. 利用辅助变量对污染土壤锌分布的克里格估值. 应用生态学报, 2006, 17(1): 97-101.
[11] McBratney A B, Santos M L M, Minasny B, et al. On Digital Soil Mapping. Geoderma, 2003, 117(1-2): 3-52.
[12] Chilès J P, Pierre D. Geostatistics: Modeling Spatial Uncertainty. New York: Wiley-Interscience, 1999.
[13] Myers D. E. Interpolation of Spatial Data: Some Theory for Kriging. International Journal of Geographical Information Science, 2002, 16(2): 205-207.
[14] Webster R, Oliver M A. Geostatistics for Environmental Scientists. New York: John Wiley, 2007.
[15] Journel A G. Constrained Interpolation and Qualitative Information: the Soft Kriging Approach. Mathematical Geology, 1986, 18(3): 269-286.
[16] Hendriks L A M, Leummens H, Stein A, et al. Use of Soft Data in a GIS to Improve Estimation of the Volume of Contaminated Soil. Water, Air and Soil Pollution, 1996, 101: 217-234.
[17] Goovaerts P. Geostatistics in Soil Science: State-of-the-Art and Perspectives. Geoderma, 1999, 89: 1-45.
[18] Bogaert P, D’Or D. Estimating Soil Properties from Thematic Soil Maps: The Bayesian Maximum Entropy Approach. Soil Science Society of America Journal, 2002, 66: 1492-1451.
[19] Brus D J, Bogart P, Heuvelink G B M, et al. Bayesian Maximum Entropy Prediction of Soil Categories Using a Traditional Soil Map as Soft Information. European Journal of Soil Science, 2008, 59: 166-177.
[20] Seibert J, McDonnell J J. On the Dialog between Experimentalist and Modeler in Catchment Hydrology: Use of Soft Data for Multicriteria Model Calibration. Water Resources Research, 2002, 38(11): 1241-1254.
[21] D’Or D, Bogaert P. Continuous-Valued Map Reconstruction with the Bayesian Maximum Entropy. Geoderma, 2003, 112: 169-178.
[22] Serre M L, Christakos G, Lee S J, et al. Soft Data Space/Time Mapping of Coarse Particulate Matter Annual Arithmetic Average over the U.S. 4th European Conference on Geostatistics for Environmental Appli-cations, Barcelona Spain, 2002.
[23] Douaik A, Van Meirvenne M, Toth T, et al. Soil Salinity Mapping Using Spatio-Temporal Kriging and Bayesian Maximum Entropy with Interval Soft Data. Geoderma 2005, 128(3-4): 234-248.
[24] Emery X. Simulation of Geological Domains Using the Plurigaussian Model: New Developments and Computer Programs. Computers & Geosciences, 2007, 33(9): 1189-1201.
[25] Wu C F, Wu J P, Luo Y M, et al. Statistical and Geoestatistical Characterization of Heavy Metal Concen-trations in a Contaminated Area Taking into Account Soil Map Units. Geoderma, 2008, 144(1-2): 171-179.
[26] Tan M Z, Xu F M, Chen J, et al. Spatial Prediction of Heavy Metal Pollution for Soils in Peri-Urban Beijing, China Based on Fuzzy Set Theory. Pedosphere, 2006, 16(5): 545-554.
[27] Goovaerts P. Geostatistical Approaches for Incorporating Elevation into the Spatial Interpolation of Rainfall. Journal of Hydrology, 2000, 228(1-2): 113-129.
[28] Zhu H, Journel A G. Indicator Conditioned Estimator. Transactions, Society for Mining, Metallurgy and Exploration, Inc., 1989, 286: 1880-1886.
[29] Almeida A S,Journel A G. Joint Simulation of Multiple-Variables with a Markov-Type Coregionalization Model. Mathematical Geology, 1994, 26(5): 565-588.
[30] W Xu, T Tran, M Srivastava R, et al. Integrating Seismic Data in Reservoir Modeling: The Collocated Cokriging Alternative. Society of Petroleum Engineers, 1992, 24742: 833-842.
[31] Goovaerts P. Ordinary Cokriging Revisited. Mathematical Geology, 1998, 30(1): 21-42.
[32] Journel A G. Nonparametric Estimation of Spatial Distributions. Mathematical Geology,1983,15(3): 445-468.
[33] Jerosch K, Schluter M, Pesch R. Spatial Analysis of Marine Categorical Information Using Indicator Kriging Applied to Georeferenced Video Mosaics of the Deep-Sea Hakon Mosby Mud Volcano. Ecological Informatics, 2006, 1(4): 391-406.
[34] Goovaerts P, Journel A G. Integrating Soil Map Information in Modelling the Spatial Variation of Continuous Soil Properties. European Journal of Soil Science 1995, 46(3): 397-414.
[35] Triantafilis J, Odeh I O A, Warr B, et al. Mapping of Salinity Risk in the Lower Namoi Valley Using Non-Linear Kriging Methods. Agricultural Water Management, 2004, 69(3): 203-229.
[36] Pardo-Iguzquiza E, Dowd P A. Multiple Indicator Cokriging with Application to Optimal Sampling for Environmental Monitoring. Computers & Geosciences, 2005, 31(1): 1-13.
[37] Lyon S W, Lembo A J, Walter M T, et al. Defining Probability of Saturation with Indicator Kriging on Hard and Soft Data. Advances in Water Resources, 2006, 29 (2): 181-193.
[38] Goovaerts P, Journel A G. Integrating Soil Map Information in Modeling the Spatial Variation of Continuous Soil Properties. European Journal of Soil Science, 1995, 46(3): 397-414.
[39] Brus D J, de Gruijter J J, Walvoort D J J, et al. Mapping the Probability of Exceeding Critical Thresholds for Cadmium Concentrations in Soils in the Netherlands. Journal of Environmental Quality, 2002,31(6):1875-1884.
[40] Park N W, Chi K H, Kwon B D, et al. Geostatistical Integration of Spectral and Spatial Information for Land-Cover Mapping Using Remote Sensing Data. Geosciences Journal, 2003, 7(4): 335-341.
[41] Ungaro F, Ragazzi F, Cappellin R, et al. Arsenic Concentration in the Soils of the Brenta Plain (Northern Italy):Mapping the Probability of Exceeding Contamination Thresholds. Journal of Geochemical Exploration, 2008, 96(2-3): 117-131.
[42] Zhu H, Journel A G. Formatting and Integrating Soft Data -Stochastic Imaging Via the Markov-Bayes Algorithm. 4th International Geostatics Congress : Troia 92, Troy Portugal, 1992.
[43] Deutsch C V, Journel A G. GsLib: Geostatistical Software Library and User’s Guide. New York: Oxford University Press, 1998.
[44] Stein A, Hoogerwerf M, Bouma J, et al. Use of Map-Delineation to Improve Co-Kriging of Point Data on Moisture Deficits. Geoderma, 1988, 43: 311-325.
[45] Voltz M, Webster R. A Comparison of Kriging, Cubic-Splines and Classification for Predicting Soil Properties from Sample Information. Journal of Soil Science, 1990, 41(3): 473-490.
[46] Vanmeirvenne M, Scheldeman K, Baert G, et al. Quantification of Soil Textural Fractions of Bas-Zaire Using Soil Map Polygons and or Point Observations. Geoderma, 1994, 62: 69-82.
[47] Voltz M, Lagacherie P, Louchart X, et al. Predicting Soil Properties over a Region Using Sample Information from a Mapped Reference Area. European Journal of Soil Science, 1997, 48(1): 19-30.
[48] Lagacherie P, Voltz M. Predicting Soil Properties over a Region Using Sample Information from a Mapped Reference Area and Digital Elevation Data: A Conditional Probability Approach. Geoderma, 2000,97(3-4):187-208.
[49] Boucneau G, Van Meirvenne M, Thas O, et al. Integrating Properties of Soil Map Delineations into Ordinary Kriging. European Journal of Soil Science, 1998, 49: 213-229.
[50] Liu T L, Juang K W, Lee D Y, et al. Interpolating Soil Properties Using Kriging Combined with Categorical Information of Soil Maps. Soil Science Society of America Journal, 2006, 70(4): 1200-1209.
[51] Hengl T, Heuvelink G B M, Stein A, et al. A Generic Framework for Spatial Prediction of Soil Variables Based on Regression-Kriging. Geoderma, 2004, 120(1-2):75-93.
[52] Hudson G, Wackernagel H. Mapping Temperature Using Kriging with External Drift - Theory and an Example from Scotland. International Journal of Climatology, 1994, 14(1): 77-91.
[53] Bourennane H, King D, Chery P, et al. Improving the Kriging of a Soil Variable Using Slope Gradient as External Drift. European Journal of Soil Science, 1996, 47(4): 473-483.
[54] Monestiez P, Allard D, Navarro Sanchez I, et al. Kriging with Categorical External Drift: Use of Thematic Maps in Spatial Prediction and Application to Local Climate Interpolation for Agricultrure. geoENV98 - the Second European Conference on Geostatistics for Environmental Sciences, November 1998. Gómez-Hernández J, Soares AFroidevaux R. Valencia, Spain Springer: 163-174.
[55] Christakos G. A Bayesian Maximum Entropy View to the Spatial Estimation Problem. Mathematical Geology, 1990, 20: 763-787.
[56] Bogaert P. Spatial Prediction of Categorical Variables: The Bme Approach
[C]. 4th European Conference on Geostatistics for Environmental Applications, Barcelona, Spain, 2002.
[57] Bogaert P. Spatial Prediction of Categorical Variables: The Bayesian Maximum Entropy Approach. Stochastic Environmental Research and Risk Assessment, 2002, 16: 425-448.
[58] Lee S J, Wentz E A. Applying Bayesian Maximum Entropy to Extrapolating Local-Scale Water Consumption in Maricopa County, Arizona. Water Resources Research, 2008, 44: W01401.
[59] Ohlmacher G C, Davis J C. Using Multiple Logistic Regression and Gis Technology to Predict Landslide Hazard in Northeast Kansas, USA. Engineering Geology, 2003, 69(3-4): 331-343.
[60] Giasson E, Clarke R T, Inda A V, et al. Digital Soil Mapping Using Multiple Logistic Regression on Terrain Parameters in Southern Brazil. Scientia Agricola, 2006, 63(3): 262-268.
[61] Wang H B, Sassa K, Xu W Y. Assessment of Landslide Susceptibility Using Multivariate Logistic Regression: A Case Study in Southern Japan. Environmental & Engineering Geoscience, 2007, 13(2): 183-192.
[62] Brunsdon C, Fotheringham S, Charlton M, et al. Geographically Weighted Regression-Modelling Spatial Non-Stationarity. The Statistician, 1998, 47: 431-443.
[63] Tu J, Xia Z G. Examining Spatially Varying Relationships between Land Use and Water Quality Using Geographically Weighted Regression I: Model Design and Evaluation. Science of the Total Environment, 2008, 407(1): 358-378.
[64] Kasimov N, KoSheleva N, Wagner V, et al. Modeling Geochemical Fields Based on Landscape-Guided Interpolation. Ecological Modelling, 2008, 212(1-2): 109-115.
[65] 周成虎, 骆剑承,等. 高分辨率卫星遥感影像地学计算. 北京: 科学出版社, 2009.
|