地理科学进展 ›› 2020, Vol. 39 ›› Issue (11): 1944-1958.doi: 10.18306/dlkxjz.2020.11.014

• 研究综述 • 上一篇    下一篇

基于水热变化的青藏高原土壤冻融过程研究进展

陈瑞1,2,3(), 杨梅学1,*(), 万国宁1, 王学佳1   

  1. 1.中国科学院西北生态环境资源研究院,冰冻圈科学国家重点实验室,兰州 730000
    2.阿尔弗雷德魏格纳研究所,亥姆霍兹极地与海洋研究中心,波兹坦 14473,德国
    3.柏林洪堡大学地理系,柏林 10099,德国
  • 收稿日期:2019-11-18 修回日期:2020-06-10 出版日期:2020-11-28 发布日期:2021-01-28
  • 通讯作者: 杨梅学
  • 作者简介:陈瑞(1992— ),男,陕西西安人,博士生,主要从事寒区陆面过程及其模拟研究。E-mail: rui.chen@awi.de
  • 基金资助:
    中国科学院战略性先导科技专项(A类)项目(XDA20100102);中国科学院战略性先导科技专项(A类)项目(XDA19070204);国家自然科学基金项目(41601077);国家自然科学基金项目(41571066);国家自然科学基金项目(41771068);中国科学院青年创新促进会项目(20180460);国家留学基金委项目(201804910129);国家留学基金委项目(201904910442)

Soil freezing-thawing processes on the Tibetan Plateau: A review based on hydrothermal dynamics

CHEN Rui1,2,3(), YANG Meixue1,*(), WAN Guoning1, WANG Xuejia1   

  1. 1. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
    2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
    3. Department of Geography, Humboldt University of Berlin, Berlin 10099, Germany
  • Received:2019-11-18 Revised:2020-06-10 Online:2020-11-28 Published:2021-01-28
  • Contact: YANG Meixue
  • Supported by:
    The Strategic Priority Research Program of the Chinese Academy of Sciences (Class A)(XDA20100102);The Strategic Priority Research Program of the Chinese Academy of Sciences (Class A)(XDA19070204);National Natural Science Foundation of China(41601077);National Natural Science Foundation of China(41571066);National Natural Science Foundation of China(41771068);The Youth Innovation Promotion Association of the Chinese Academy of Sciences(20180460);The Program of China Scholarship Council(201804910129);The Program of China Scholarship Council(201904910442)

摘要:

青藏高原近地层土壤冻融过程是高原地表最显著的陆面特征之一,也是判断冻土发育、存在以及反映气候变化的重要指标。近地层土壤昼夜、季节性的冻结、融化会导致青藏高原陆—气间能水平衡的变化甚至异常,从而显著影响高原地表水文过程、生态环境、碳氮循环以及高原及其周边区域的天气和气候系统。论文从观测、模拟以及对气候的影响3个角度来探讨1990年以来青藏高原土壤冻融过程的最新研究进展。结果表明:① 在一个完整的年冻融循环过程中,近地表各层土壤大体都经历了夏季融化期、春秋季融化—冻结期、冬季冻结期4个阶段。受局地因素的影响,不同站点的冻结或消融起止时间、速率、类型均有差异。② 多年冻土区和季节冻土区的日冻融循环过程差异较大,主要体现在日冻融循环持续时间上。③ 不同陆面模式都可以很好地抓住冻融过程中物理量的时空变化,但都需要针对高原陆面过程的特点进行参数化改进。④ 规避不稳定的迭代计算并根据热力学平衡方程确定冻融临界温度可以改进不合理的冻融参数化方案。基于已有研究回顾,发现增加高质量的观测站,利用卫星遥感等多种手段来反演高原土壤冻融过程以及加强陆面模式与区域气候模式和全球气候模式的耦合,并立足于高原冻融过程的特点发展相适应的参数化方案以及模拟结构的调整,能够有助于高原冻融过程的模拟。

关键词: 土壤冻融过程, 陆面模式, 模式适应性, 参数化方案改进, 青藏高原

Abstract:

The freezing and thawing processes of near-surface soil are one of the most significant physical characteristics of the land surface on the Tibetan Plateau (TP), as well as an essential index for estimating the existence and development of the permafrost and reflecting the climate change. The seasonal and diurnal freezing-thawing processes of the near-surface soil cause the changes and even anomalies of water and energy balance between the land and the atmosphere on the TP, and thus significantly affect surface hydrological processes, ecological environment, carbon and nitrogen cycles, and the weather and climate system on the plateau and of the surrounding areas. This article discusses the observational and simulated changes and the impact on the climate by reviewing latest research progress in soil freezing-thawing processes (SFTPs) over the past 20 years. Our review shows that: 1) During a complete annual freezing-thawing cycle, each layer of soil generally experiences four stages: summer thawing period, autumn thawing-freezing period, winter freezing period, and spring thawing-freezing period. Due to the influence of local factors, the SFTPs show differences in the start and end dates, rate, and type of change. 2) Diurnal freezing-thawing cycles show large differences between the permafrost regions and the seasonally frozen regions, which are mainly reflected in the duration of diurnal freezing-thawing cycles. 3) Although different land surface models (LSMs) can well capture the spatiotemporal variations of physical quantity of SFTPs, all of them need to be revised according to the characteristic of LSMs of the TP. 4) Unreasonable freezing-thawing model parameterization schemes can be improved through avoiding the unstable iterative computation and determining the critical freezing-thawing temperature according to the thermodynamic equilibrium equation. According to the review of existing research, adding high-quality observation stations, using satellite remote sensing data to retrieve SFTPs and deepen the coupling of LSMs with regional climate models and global climate models, developing parameterization schemes that are suitable for SFTPs of the TP, and adjusting the model structures can be helpful for the simulation of SFTPs on the TP.

Key words: soil freezing-thawing processes, land surface models, model applicability, parameterized modification, Tibetan Plateau