地理科学进展 ›› 2021, Vol. 40 ›› Issue (2): 283-292.doi: 10.18306/dlkxjz.2021.02.009
收稿日期:
2020-04-10
修回日期:
2020-07-13
出版日期:
2021-02-28
发布日期:
2021-04-28
通讯作者:
蔡大伟
作者简介:
卢新海(1965— ),男,湖北洪湖人,教授,博士生导师,主要从事土地资源管理与粮食安全研究。E-mail: 基金资助:
LU Xinhai1, CAI Dawei1,*(), ZENG Chen2,3
Received:
2020-04-10
Revised:
2020-07-13
Online:
2021-02-28
Published:
2021-04-28
Contact:
CAI Dawei
Supported by:
摘要:
住宅价格的变化是关系我国城镇化建设和社会经济高质量发展的重要问题。为探索住宅价格分位点下的影响因素,本文以我国中部国家中心城市——武汉市为例,运用空间分位数模型进行定量分析,同时将两阶段空间自回归模型结果作为对比揭示其优越性。研究表明:① 空间分位数模型不仅能考虑住宅价格的空间自相关性,而且还关注了住宅价格的条件分布特征,更为全面地描述微观因素对不同价位住宅的作用效应。②从分位点来看,高住宅价格的空间自相关性强于低住宅价格的;而且影响因素存在波动性和异质性,相比较于两阶段空间自回归的均值结果,空间分位数模型中各因素的影响程度随着分位点的变化出现上升或下降趋势,对低价、高价等不同价位的住宅影响程度存在显著差异。③ 整体而言,建筑年龄和医疗配套为负向影响因素,容积率等建筑特征、区位特征和教育配套等邻里特征变量为正向影响因素。基于研究结果,合理提高中低价位住宅区域的容积率和绿地率、加大低价住宅区的轨道交通和教育设施的投入力度等应当成为政府部门针对不同价位的住宅制定差异化政策措施的考虑方向。
卢新海, 蔡大伟, 曾晨. 基于空间分位数模型的住宅价格分异的影响因素研究——以武汉市为例[J]. 地理科学进展, 2021, 40(2): 283-292.
LU Xinhai, CAI Dawei, ZENG Chen. Influencing factors of housing price differentiation based on the spatial quantile model: A case study of Wuhan City[J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 283-292.
表1
住宅特征价格模型的指标体系"
特征类型 | 变量名称 | 量化方式 |
---|---|---|
建筑特征 | 建筑年龄 | 距小区建成年份 |
容积率 | 小区的建筑总面积/小区宗地面积 | |
绿地率 | 小区绿化面积/小区宗地面积 | |
区位特征 | 交通区位 | 小区距最近地铁站的距离 |
环线区位 | 小区所处环线位置(一环内:3分;一环外二环内:2分;二环外三环内:1分) | |
邻里特征 | 教育配套 | 小区附近1 km内有无幼儿园、小学、中学、大学,每项设为1分,共4分 |
生活配套 | 小区附近1 km内有无商场、超市、菜市,每项设为1分,共3分 | |
环境设施 | 小区距最近公园的距离 | |
医疗设施 | 小区距最近医院(不含诊所、卫生院)的距离 | |
金融设施 | 小区距最近银行(不含ATM机)的距离 |
表2
空间分位数回归模型的估计结果"
变量 | 2SLS | SQR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.1分位点 | 0.2分位点 | 0.3分位点 | 0.4分位点 | 0.5分位点 | 0.6分位点 | 0.7分位点 | 0.8分位点 | 0.9分位点 | ||
ln建筑年龄 | -0.138*** | -0.112*** | -0.122*** | -0.124*** | -0.135*** | -0.147*** | -0.148*** | -0.150*** | -0.151*** | -0.144*** |
(0.007) | (0.011) | (0.011) | (0.010) | (0.008) | (0.009) | (0.011) | (0.012) | (1.186) | (0.018) | |
容积率 | 0.012*** | 0.005 | 0.006 | 0.009* | 0.013** | 0.012*** | 0.015*** | 0.017** | 0.013* | 0.018* |
(0.003) | (0.003) | (0.006) | (0.005) | (0.005) | (0.004) | (0.005) | (0.007) | (0.015) | (0.010) | |
绿地率 | 0.425*** | 0.485*** | 0.365*** | 0.320*** | 0.310*** | 0.341*** | 0.411*** | 0.411*** | 0.374*** | 0.348* |
(0.072) | (0.153) | (0.123) | (0.105) | (0.065) | (0.067) | (0.107) | (0.126) | (0.008) | (0.193) | |
ln交通区位 | -0.013* | -0.005 | -0.005 | -0.008 | -0.015** | -0.020*** | -0.020*** | -0.024** | -0.016 | -0.020 |
(0.007) | (0.009) | (0.009) | (0.011) | (0.007) | (0.007) | (0.008) | (0.011) | (0.110) | (0.016) | |
环线区位 | 0.050*** | 0.041*** | 0.061*** | 0.051*** | 0.047*** | 0.045*** | 0.038** | 0.033** | 0.039** | 0.068*** |
(0.010) | (0.014) | (0.014) | (0.012) | (0.010) | (0.010) | (0.015) | (0.015) | (0.018) | (0.023) | |
教育配套 | 0.020*** | 0.028** | 0.018* | 0.019** | 0.022*** | 0.017* | 0.007 | 0.019* | 0.020** | 0.034** |
(0.007) | (0.011) | (0.010) | (0.007) | (0.006) | (0.010) | (0.010) | (0.010) | (0.010) | (0.015) | |
生活配套 | 0.019* | 0.027 | 0.055*** | 0.040*** | 0.028** | 0.015 | 0.010 | -0.006 | 0.001 | -0.004 |
(0.011) | (0.017) | (0.018) | (0.014) | (0.012) | (0.014) | (0.019) | (0.020) | (0.020) | (0.026) | |
ln环境设施 | -0.032*** | -0.032** | -0.026* | -0.038*** | -0.037*** | -0.038*** | -0.034*** | -0.027*** | -0.028*** | -0.039** |
(0.009) | (0.014) | (0.015) | (0.009) | (0.007) | (0.008) | (0.009) | (0.010) | (0.011) | (0.017) | |
ln医疗设施 | 0.014** | 0.011 | 0.015** | 0.022*** | 0.021*** | 0.014* | 0.010 | 0.011 | 0.012 | 0.019 |
(0.006) | (0.008) | (0.008) | (0.006) | (0.006) | (0.007) | (0.008) | (0.008) | (0.012) | (0.015) | |
ln金融设施 | -0.017*** | 0.001 | -0.014* | -0.013* | -0.014** | -0.011* | -0.015* | -0.022** | -0.030*** | -0.024* |
(0.005) | (0.009) | (0.008) | (0.007) | (0.005) | (0.006) | (0.008) | (0.009) | (0.011) | (0.012) | |
常数项 | 3.145*** | 3.400*** | 4.892*** | 4.699*** | 4.347*** | 3.538*** | 2.600* | 2.574* | 1.975* | 3.826*** |
(0.785) | (1.255) | (1.314) | (0.963) | (0.905) | (1.033) | (1.423) | (1.364) | (1.186) | (1.323) | |
0.712*** | 0.648*** | 0.501*** | 0.537*** | 0.586*** | 0.684*** | 0.786*** | 0.795*** | 0.858*** | 0.669*** | |
(0.079) | (0.124) | (0.128) | (0.097) | (0.092) | (0.106) | (0.146) | (0.141) | (0.120) | (0.129) |
[1] | 张绍良, 李晶晶, 公云龙 . 基于特征价格模型的城市住宅价格影响因素研究[J]. 地域研究与开发, 2013,32(4):80-83. |
[ Zhang Shaoliang, Li Jingjing, Gong Yunlong . Study on the influencing factors of urban house price based on hedonic price model. Areal Research and Development, 2013,32(4):80-83. ] | |
[2] | 尹上岗, 宋伟轩, 马志飞 , 等. 南京市住宅价格时空分异格局及其影响因素分析: 基于地理加权回归模型的实证研究[J]. 人文地理, 2018,33(3):68-77. |
[ Yin Shanggang, Song Weixuan, Ma Zhifei , et al. Spatial differentiation and influencing factors analysis of housing prices in Nanjing: Based on geographically weighted regression model. Human Geography, 2018,33(3):68-77. ] | |
[3] |
崔娜娜, 古恒宇, 沈体雁 . 北京市住房价格和租金的空间分异与相互关系[J]. 地理研究, 2019,38(6):1420-1434.
doi: 10.11821/dlyj020180352 |
[ Cui Nana, Gu Hengyu, Shen Tiyan . The spatial differentiation and relationship between housing price and rents: Evidence from Beijing in China. Geographical Research, 2019,38(6):1420-1434. ] | |
[4] |
宋伟轩, 毛宁, 陈培阳 , 等. 基于住宅价格视角的居住分异耦合机制与时空特征: 以南京为例[J]. 地理学报, 2017,72(4):589-602.
doi: 10.11821/dlxb201704003 |
[ Song Weixuan, Mao Ning, Chen Peiyang , et al. Coupling mechanism and spatial-temporal pattern of residential differentiation from the perspective of housing prices: A case study of Nanjing. Acta Geographica Sinica, 2017,72(4):589-602. ] | |
[5] |
王福良, 冯长春, 甘霖 . 轨道交通对沿线住宅价格影响的分市场研究: 以深圳市龙岗线为例[J]. 地理科学进展, 2014,33(6):765-772.
doi: 10.11820/dlkxjz.2014.06.005 |
[ Wang Fuliang, Feng Changchun, Gan Lin . Impact of rail transit on the residential property prices of submarkets: A case of the Longgang Line of Shenzhen. Progress in Geography, 2014,33(6):765-772. ] | |
[6] |
宋伟轩, 马雨竹, 陈艳如 . 南京城区住宅售租价格时空分异与影响因素[J]. 地理科学进展, 2018,37(9):1268-1276.
doi: 10.18306/dlkxjz.2018.09.009 |
[ Song Weixuan, Ma Yuzhu, Chen Yanru . Spatiotemporal differentiation and influencing factors of housing selling and rental prices: A case study of Nanjing City. Progress in Geography, 2018,37(9):1268-1276. ] | |
[7] | 王健, 景霖霖, 彭山桂 , 等. 基于空间计量模型的商品住宅开发商定价互动影响及其空间分异研究: 以济南市为例[J]. 中国土地科学, 2019,33(1):24-31. |
[ Wang Jian, Jing Linlin, Peng Shangui , et al. Study on the interactive effect and spatial differentiation of commodity housing pricing based on spatial econometric models: A case study of Jinan City. China Land Science, 2019,33(1):24-31. ] | |
[8] |
Zhang L, Yi Y M . What contributes to the rising house prices in Beijing? A decomposition approach[J]. Journal of Housing Economics, 2018,41:72-84.
doi: 10.1016/j.jhe.2018.04.003 |
[9] |
Koenker R, Bassett G . Regression quantiles[J]. Econometrica, 1978,46(1):33-50.
doi: 10.2307/1913643 |
[10] | 吴晓隽, 裘佳璐 . Airbnb房源价格影响因素研究: 基于中国36个城市的数据[J]. 旅游学刊, 2019,34(4):13-28. |
[ Wu Xiaojun, Qiu Jialu . A study of Airbnb listing price determinants: Based on data from 36 cities in China. Tourism Tribune, 2019,34(4):13-28. ] | |
[11] | 程亚鹏 . 城市住房子市场价格差异的分位数分解方法与实证[J]. 中国管理科学, 2017,25(6):39-49. |
[ Cheng Yapeng . Quantile decomposition method and empirical analysis of price difference between urban housing sub-market. Chinese Journal of Management Science, 2017,25(6):39-49. ] | |
[12] |
Zietz J, Zietz E N, Sirmans G S . Determinants of house prices: A quantile regression approach[J]. Journal of Real Estate Finance and Economics, 2008,37:317-333.
doi: 10.1007/s11146-007-9053-7 |
[13] |
Kostov P . A spatial quantile regression hedonic model of agricultural land prices[J]. Spatial Economic Analysis, 2009,4(1):53-72.
doi: 10.1080/17421770802625957 |
[14] |
Liao W C, Wang X Z . Hedonic house prices and spatial quantile regression[J]. Journal of Housing Economics, 2012,21:16-27.
doi: 10.1016/j.jhe.2011.11.001 |
[15] |
Mathur S . Impact of an urban growth boundary across the entire house price spectrum: The two-stage quantile spatial regression approach[J]. Land Use Policy, 2019,80:88-94.
doi: 10.1016/j.landusepol.2018.09.011 |
[16] |
Lancaster K J . A new approach to consumer theory[J]. Journal of Political Economy, 1996,74:132-157.
doi: 10.1086/259131 |
[17] |
Rosen S . Hedonic prices and implicit markets: Product differentiation in pure competition[J]. Journal of Political Economy, 1974,82(1):34-55.
doi: 10.1086/260169 |
[18] | 黄静, 崔光灿, 王诤诤 . 大型主题乐园对周边住宅价格的影响分析: 以上海迪士尼为例[J]. 城市发展研究, 2018,25(5):37-43. |
[ Huang Jing, Cui Guangcan, Wang Zhengzheng . Study on the impact of large theme resort on the surrounding housing price: Take Shanghai Disney as an example. Urban Development Studies, 2018,25(5):37-43. ] | |
[19] | 毛德华, 吴亚菱, 袁周炎妍 , 等. 长沙市生态景观对住宅价格的影响分析[J]. 经济地理, 2018,38(8):76-82. |
[ Mao Dehua, Wu Yaling, Yuan Zhouyanyan , et al. Impact analysis of ecological landscape on housing price in Changsha City. Economic Geography, 2018,38(8):76-82. ] | |
[20] | 陈建宝, 丁军军 . 分位数回归技术综述[J]. 统计与信息论坛, 2008(3):89-96. |
[ Chen Jianbao, Ding Junjun . A review of technologies on quantile regression. Statistics & Information Forum, 2008(3):89-96. ] | |
[21] |
Heckman J J . Sample selection bias as a specification error[J]. Econometrica, 1979,47(1):153-161.
doi: 10.2307/1912352 |
[22] |
Stephen M, Lennon C, Winky H . Quantile regression estimates of Hong Kong real estate prices[J]. Urban Studies, 2010,47(11):2461-2472.
doi: 10.1177/0042098009359032 |
[23] |
Han X D, Fang W, Li H J , et al. Heterogeneity of influential factors across the entire air quality spectrum in Chinese cities: A spatial quantile regression analysis[J]. Environmental Pollution, 2020,262, 114259. doi: 10.1016/j.envpol.2020.114259.
doi: 10.1016/j.envpol.2020.114259 pmid: 32120259 |
[24] |
Zeren F, Özcan B, Menteşe E Y . Health care convergence analysis in Turkey on the province level: Spatial quantile method[J]. Procedia Economics and Finance, 2016,38:90-97.
doi: 10.1016/S2212-5671(16)30181-2 |
[25] |
Kim T H, Muller C . Two-stage quantile regression when the first stage is based on quantile regression[J]. The Econometrics Journal, 2004,7(1):218-231.
doi: 10.1111/j.1368-423X.2004.00128.x |
[26] |
Chernozhukov V, Hansen C . Instrumental quantile regression inference for structural and treatment effect models[J]. Journal of Econometrics, 2006,132(2):491-525.
doi: 10.1016/j.jeconom.2005.02.009 |
[27] |
王芳, 高晓路, 颜秉秋 . 基于住宅价格的北京城市空间结构研究[J]. 地理科学进展, 2014,33(10):1322-1331.
doi: 10.11820/dlkxjz.2014.10.004 |
[ Wang Fang, Gao Xiaolu, Yan Bingqiu . Research on urban spatial structure in Beijing based on housing prices. Progress in Geography, 2014,33(10):1322-1331. ] | |
[28] | 王洪强, 李小雪, 张英婕 . 上海市住宅租金价格空间分异格局及其影响因素分析[J]. 管理现代化, 2019,39(5):95-100. |
[ Wang Hongqiang, Li Xiaoxue, Zhang Yingjie . Analysis on the spatial differentiation pattern of residential rent price in Shanghai and its influencing factors. Modernization of Management, 2019,39(5):95-100. ] | |
[29] | 张凌, 常欣, 温海珍 . 重大事件与政策调整对杭州市住房市场价量波动的影响[J]. 浙江大学学报(理学版), 2017,44(3):363-368, 378. |
[ Zhang Ling, Chang Xin, Wen Haizhen . The influence of significant events and control policies on price and volume in housing market of Hangzhou. Journal of Zhejiang University (Science Edition), 2017,44(3):363-368, 378. ] |
[1] | 郭倩, 廖和平, 王子羿, 刘愿理, 李涛. 秦巴山区村域稳定脱贫测度及返贫防控风险识别——以重庆市城口县为例[J]. 地理科学进展, 2021, 40(2): 232-244. |
[2] | 李智轩, 甄峰, 张姗琪, 杨羽. 老年人公交移动性的季节时空分异特征研究——以安徽省芜湖市为例[J]. 地理科学进展, 2021, 40(2): 293-303. |
[3] | 王亚辉, 李秀彬, 辛良杰, 谈明洪. 耕地资产社会保障功能的空间分异研究——不同农业类型区的比较[J]. 地理科学进展, 2020, 39(9): 1473-1484. |
[4] | 付占辉, 梅林, 郑茹敏, 王彤彤. 东北地区城市女性就业水平空间分异机制[J]. 地理科学进展, 2020, 39(8): 1308-1318. |
[5] | 黄晗, 李寻欢, 周扬. 中国丘陵山区农村贫困时空格局及其演变机制研究——以江西省于都县为例[J]. 地理科学进展, 2020, 39(6): 938-950. |
[6] | 吴燕, 李红波. 大都市城乡融合区空间演进及内在关联性测度——基于武汉市夜间灯光数据[J]. 地理科学进展, 2020, 39(1): 13-23. |
[7] | 罗静,蒋亮,罗名海,田玲玲,陈国磊,田野,吴益坤. 武汉市新城区乡村发展水平评价及规模等级结构研究[J]. 地理科学进展, 2019, 38(9): 1370-1381. |
[8] | 焦利民, 龚晨, 许刚, 董婷, 张博恩, 李泽慧. 大都市区城市扩张过程及形态对比分析——以东京、纽约和上海为例[J]. 地理科学进展, 2019, 38(5): 675-685. |
[9] | 王成, 李颢颖, 何焱洲, 马小苏, 周明茗. 重庆直辖以来乡村人居环境可持续发展力及其时空分异研究[J]. 地理科学进展, 2019, 38(4): 556-566. |
[10] | 张金亭, 赵玉丹, 田扬戈, 何青青, 庄艳华, 彭韵羲, 洪松. 大气污染物排放量与颗粒物环境空气质量的空间非协同耦合研究——以武汉市为例[J]. 地理科学进展, 2019, 38(4): 612-624. |
[11] | 杨智威, 陈颖彪, 吴志峰, 千庆兰, 黄清瑶. 基于自然区块的城市热环境空间分异性研究[J]. 地理科学进展, 2019, 38(12): 1944-1956. |
[12] | 王绍博, 郭建科, 罗小龙, 顾宗倪. 高速铁路对中心城市航空客运市场的空间影响——基于人均时间价值视角[J]. 地理科学进展, 2019, 38(11): 1665-1674. |
[13] | 李智轩, 胡宏. 基于计划行为理论的城市居住分异对居民健康活动的影响研究[J]. 地理科学进展, 2019, 38(11): 1712-1725. |
[14] | 宋伟轩, 马雨竹, 陈艳如. 南京城区住宅售租价格时空分异与影响因素[J]. 地理科学进展, 2018, 37(9): 1268-1276. |
[15] | 陈卓, 金凤君, 杨宇, 王伟. 高速公路流的距离衰减模式与空间分异特征——基于福建省高速公路收费站数据的实证研究[J]. 地理科学进展, 2018, 37(8): 1086-1095. |
|