地理科学进展 ›› 2020, Vol. 39 ›› Issue (11): 1874-1883.doi: 10.18306/dlkxjz.2020.11.008
李宇1,2,3(), 邱炳文1,2,3,*(
), 何玉花1,2,3, 陈功1,2,3, 叶智燕1,2,3
收稿日期:
2019-11-08
修回日期:
2020-10-08
出版日期:
2020-11-28
发布日期:
2021-01-28
通讯作者:
邱炳文
作者简介:
李宇(1992— ),男,河南商丘人,硕士生,主要从事农业遥感科学研究。E-mail:基金资助:
LI Yu1,2,3(), QIU Bingwen1,2,3,*(
), HE Yuhua1,2,3, CHEN Gong1,2,3, YE Zhiyan1,2,3
Received:
2019-11-08
Revised:
2020-10-08
Online:
2020-11-28
Published:
2021-01-28
Contact:
QIU Bingwen
Supported by:
摘要:
耕地复种指数的持续稳定关乎国家粮食安全战略,实时高效地获取复种指数时空演变的详细过程信息具有重要意义。论文基于2001—2018年500 m分辨率的MODIS09A1影像数据,利用小波谱顶点的快速自动检测方法获取了全国复种指数的时空分布图,并采用Mann-Kendall检验、启发式分割算法等方法开展了全国复种指数变化形式的时空演变规律及驱动机制研究。结果表明:全国耕地复种指数稳中有升,复种指数均值从2001年的1.14上升至2018年的1.30。全国6%的耕地面积复种指数发生显著变化(约13.5万km2),相当于一个安徽省的面积。复种指数增加面积约占变化面积的2/3,复种指数下降面积约占变化面积的1/3。其中,复种指数增加的面积主要来源于黄土高原区、甘新区的休耕转为单季以及黄淮海区单季转双季,且集中在2004—2013年。2013年至今,全国复种指数仍呈增加趋势,黄淮海区单季转双季的面积保持持续增加是重要的影响因素。复种指数下降的面积主要来源于2009—2013年长江中下游平原区的双季转单季。保持黄土高原区、甘新区的耕地有效种植面积以及黄淮区耕地的双季种植面积,适当抑制长江中下游地区耕地复种指数的下降态势,对于稳定耕地复种指数、确保粮食安全具有重要意义。
李宇, 邱炳文, 何玉花, 陈功, 叶智燕. 基于MODIS数据的2001—2018年中国耕地复种指数反演研究[J]. 地理科学进展, 2020, 39(11): 1874-1883.
LI Yu, QIU Bingwen, HE Yuhua, CHEN Gong, YE Zhiyan. Cropping intensity based on MODIS data in China during 2001-2018[J]. PROGRESS IN GEOGRAPHY, 2020, 39(11): 1874-1883.
[1] | Liu L, Xu X, Zhuang D, et al. Changes in the potential multiple cropping system in response to climate change in China from 1960-2010[J]. PLoS One, 2013,8(12):135-141. |
[2] | Liu L, Xiao X, Qin Y, et al. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2020,239(5):111-124. |
[3] | Zhou D, An P, Pan Z, et al. Arable land use intensity change in China from 1985 to 2005: Evidence from integrated cropping systems and agro economic analysis[J]. Journal of Agricultural Science, 2012,150(2):179-190. |
[4] | Biradar C M, Xiao X. Quantifying the area and spatial distribution of double-and triple-cropping croplands in India with multi-temporal MODIS imagery in 2005[J]. International Journal of Remote Sensing, 2011,32(2):367-386. |
[5] | Gray J, Friedl M, Frolking S, et al. Mapping Asian cropping intensity with MODIS[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(8):3373-3379. |
[6] | Jain M, Mondal P, DeFries R S, et al. Mapping cropping intensity of smallholder farms: A comparison of methods using multiple sensors[J]. Remote Sensing of Environment, 2013,134(16):210-223. |
[7] | Griffiths P, Nendel C, Hostert P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping[J]. Remote Sensing of Environment, 2019,220(9):135-151. |
[8] | Qiu B W, Huang Y Z, Chen C C, et al. Mapping spatiotemporal dynamics of maize in China from 2005 to 2017 through designing leaf moisture based indicator from normalized multi-band drought index[J]. Computers and Electronics in Agriculture, 2018,153(4):82-93. |
[9] | 左丽君, 张增祥, 董婷婷, 等. 耕地复种指数研究的国内外进展[J]. 自然资源学报, 2009,24(3):553-560. |
[ Zuo Lijun, Zhang Zengxiang, Dong Tingting, et al. Progress in the research of cultivated land multiple cropping index at home and abroad. Journal of Natural Resources, 2009,24(3):553-560. ] | |
[10] | Qiu B, Lu D, Tang Z, et al. Mapping cropping intensity trends in China during 1982-2013[J]. Applied Geography, 2017,79(12):212-222. |
[11] | Yan H, Liu F, Qin Y, et al. Tracking the spatio-temporal change of cropping intensity in China during 2000-2015[J]. Environmental Research Letters, 2018,14(3):035008. doi: 10.1088/1748-9326/aaf9c7. |
[12] | Li S, Li X, Sun L, et al. An estimation of the extent of cropland abandonment in mountainous regions of China[J]. Land Degradation & Development, 2018,29(5):1327-1342. |
[13] | 李卓, 刘淑亮, 孙然好, 等. 黄淮海地区耕地复种指数的时空格局演变[J]. 生态学报, 2018,38(12):4454-4460. |
[ Li Zhuo, Liu Shuliang, Sun Ranhao, et al. Identifying the temporal-spatial pattern evolution of the multiple cropping index in the Huang-Huai-Hai region. Acta Ecologica Sinica, 2018,38(12):4454-4460. ] | |
[14] | 蒋敏, 李秀彬, 辛良杰, 等. 南方水稻复种指数变化对国家粮食产能的影响及其政策启示[J]. 地理学报, 2019,74(1):34-45. |
[ Jiang Min, Li Xiubin, Xin Liangjie, et al. The impact of paddy rice multiple cropping index changes in Southern China on national grain production capacity and its policy implications. Acta Geographica Sinica, 2019,74(1):32-43. ] | |
[15] | 田罗, 周文佐, 何万华, 等. 2000—2016年四川省耕地种植指数时空变化及其自然潜力分析[J]. 中国生态农业学报, 2018,26(8):1206-1216. |
[ Tian Luo, Zhou Wenzuo, He Wanhua, et al. Temporal and spatial changes and natural potential of cultivated land planting index in Sichuan Province from 2000 to 2016. Chinese Journal of Eco-Agriculture, 2018,26(8):1206-1216. ] | |
[16] | 丁明军, 陈倩, 辛良杰, 等. 1999—2013年中国耕地复种指数的时空演变格局[J]. 地理学报, 2015,70(7):1080-1090. |
[ Ding Mingjun, Chen Qian, Xin Liangjie, et al. Spatial and temporal variations of multiple cropping index in China based on SPOT-NDVI during 1999-2013. Acta Geographica Sinica, 2015,70(7):1080-1090. ] | |
[17] | 彭代亮, 黄敬峰, 金辉民. 基于MODIS-NDVI的浙江省耕地复种指数监测[J]. 中国农业科学, 2006,39(7):1352-1357. |
[ Peng Dailiang, Huang Jingfeng, Jin Huimin. Monitoring of multiple cropping index of cultivated land in Zhejiang Province based on MODIS-NDVI. Scientia Agricultura Sinica, 2006,39(7):1352-1357. ] | |
[18] | Wang Y, Zhang J, Liu D, et al. Accuracy assessment of GlobeLand30 2010 land cover over China based on geographically and categorically stratified validation sample data[J]. Remote Sensing, 2018,10(8):1213. doi: 10.3390/rs10081213. |
[19] | 李世东. 中国退耕还林发展阶段研究[J]. 世界林业研究, 2003,16(1):36-41. |
[ Li Shidong. Study on the development stages of converting cropland for forest and grassland. World Forestry Research, 2003,16(1):36-41. ] | |
[20] | 封国林, 龚志强, 董文杰, 等. 基于启发式分割算法的气候突变检测研究[J]. 物理学报, 2005,54(11):5494-5499. |
[ Feng Guolin, Gong Zhiqiang, Dong Wenjie, et al. Abrupt climate change detection based on heuristic segmentation algorithm. Acta Physica Sinica, 2005,54(11):5494-5499. ] | |
[21] | 陈学庚, 赵岩. 新疆兵团农业机械化现状与发展趋势[J]. 华东交通大学学报, 2015,32(2):1-7. |
[ Chen Xuegeng, Zhao Yan. Status and development trend of agricultural mechanization in Xinjiang production and construction corps. Journal of East China Jiaotong University, 2015,32(2):1-7. ] | |
[22] | Qiu B, Chen G, Tang Z, et al. Assessing the Three-North Shelter Forest Program in China by a novel framework for characterizing vegetation changes[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,133:75-88. |
[1] | 陈卓, 梁宜, 金凤君. 基于陆路综合交通系统的中国城市网络通达性模拟及其对区域发展格局的影响[J]. 地理科学进展, 2021, 40(2): 183-193. |
[2] | 姜宛贝, 刘卫东, 刘志高, 韩梦瑶. 中国化石能源燃烧碳排放强度非均衡性及其演变的驱动力分析[J]. 地理科学进展, 2020, 39(9): 1425-1435. |
[3] | 胡国建, 陆玉麒. 基于企业视角的城市网络研究进展、思考和展望[J]. 地理科学进展, 2020, 39(9): 1587-1596. |
[4] | 朱晟君, 黄永源, 胡晓辉. 多尺度视角下的产业价值链与空间升级研究框架与展望[J]. 地理科学进展, 2020, 39(8): 1367-1384. |
[5] | 杜欣儒, 路紫, 李仁杰, 董雅晴, 高伟. 中国枢纽机场时间延误成本估算与航线影响分析及中美比较[J]. 地理科学进展, 2020, 39(7): 1160-1171. |
[6] | 周国华, 张汝娇, 贺艳华, 戴柳燕, 张丽. 论乡村聚落优化与乡村相对贫困治理[J]. 地理科学进展, 2020, 39(6): 902-912. |
[7] | 谭雪兰, 蒋凌霄, 王振凯, 安悦, 陈敏, 任辉. 地理学视角下的中国乡村贫困——源起、进展与展望[J]. 地理科学进展, 2020, 39(6): 913-923. |
[8] | 刘小鹏, 程静, 赵小勇, 苗红, 魏静宜, 曾端, 马存霞. 中国可持续减贫的发展地理学研究[J]. 地理科学进展, 2020, 39(6): 892-901. |
[9] | 孙娜, 张梅青. 基于高铁流的中国城市网络结构特征演变研究[J]. 地理科学进展, 2020, 39(5): 727-737. |
[10] | 杜德林, 王姣娥, 王祎. 中国三大航空公司市场竞争格局及演化研究[J]. 地理科学进展, 2020, 39(3): 367-376. |
[11] | 周美君, 李飞, 邵佳琪, 杨海娟. 气候变化背景下中国玉米生产潜力变化特征[J]. 地理科学进展, 2020, 39(3): 443-453. |
[12] | 孙才志, 阎晓东. 基于MRIO的中国省区和产业灰水足迹测算及转移分析[J]. 地理科学进展, 2020, 39(2): 207-218. |
[13] | 韩炜, 蔡建明. 乡村非农产业时空格局及其对居民收入的影响[J]. 地理科学进展, 2020, 39(2): 219-230. |
[14] | 李晓丽, 宋伟轩, 吴威, 马雨竹. 基于跟踪调查的北京城市空间感知研究——以中国科学院大学硕士研究生为例[J]. 地理科学进展, 2020, 39(2): 276-285. |
[15] | 邹利林, 刘彦随, 王永生. 中国土地利用冲突研究进展[J]. 地理科学进展, 2020, 39(2): 298-309. |
|