地理科学进展, 2022, 41(9): 1702-1715 doi: 10.18306/dlkxjz.2022.09.012

“粤港澳大湾区创新发展”专辑

粤港澳大湾区科技基础设施的空间集聚与区域发展效应

王洋,1, 张虹鸥2,3, 岳晓丽2,4

1.云南师范大学地理学部,昆明 650500

2.广东省科学院广州地理研究所,广东省遥感与地理信息系统应用重点实验室/广东省地理空间信息技术与应用公共实验室

3.粤港澳大湾区战略研究院,广州 510070

4.广东工业大学建筑与城市规划学院,广州 510090

Spatial agglomeration and regional development effects of science and technology infrastructures in the Guangdong-Hong Kong-Macao Greater Bay Area

WANG Yang,1, ZHANG Hong'ou2,3, YUE Xiaoli2,4

1. Faculty of Geography, Yunnan Normal University, Kunming 650500, China

2. Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China

3. Institute of Strategy Research for the Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510070, China

4. School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou 510090, China

收稿日期: 2022-01-20   修回日期: 2022-06-22  

基金资助: 国家自然科学基金重点项目(42130712)
国家自然科学基金项目(41871150)
国家自然科学基金项目(42101182)
粤港澳大湾区战略研究院建设专项(2021GDASYL-20210401001)

Received: 2022-01-20   Revised: 2022-06-22  

Fund supported: Key Program of the National Natural Science Foundation of China(42130712)
National Natural Science Foundation of China(41871150)
National Natural Science Foundation of China(42101182)
Special Construction Project of Guangdong-Hong Kong-Macao Greater Bay Area Strategic Research Institute(2021GDASYL-20210401001)

作者简介 About authors

王洋(1984— ),男,黑龙江黑河人,博士,研究员,研究领域为城市地理、城市与区域规划。E-mail: wyxkwy@163.com

摘要

为探究科技基础设施的空间分布特征和区域发展效应,论文以粤港澳大湾区688个科技基础设施为研究对象,以56个县区为基本研究单元,采用平均最近邻距离法分析粤港澳大湾区科技基础设施的空间集聚性与空间差异格局。基于地理探测器从经济水平、居住收入、住房价格、人口学历结构4个方面分析粤港澳大湾区科技基础设施的区域发展效应。结果表明:① 粤港澳大湾区科技基础设施呈现高度的空间集聚性分布,主要集中在广州核心区、深圳南山区和香港南部地区,在县区尺度上具有显著的空间差异和空间极化现象;② 粤港澳大湾区科技基础设施分布对人口学历结构、经济水平、住房价格的空间格局具有显著的正向影响,显示出区域发展效应;③ 不同性质科技基础设施的区域发展效应有所差别,基础研究类科技基础设施对人口学历结构的影响强度最高,应用类科技基础设施对经济水平的影响最为明显。该研究可为粤港澳大湾区创新地理的学术研究提供案例补充,也为粤港澳大湾区科技基础设施的合理布局和优化配置提供决策支撑,具有学术意义和现实价值。

关键词: 科技基础设施; 创新地理; 创新的区域效应; 粤港澳大湾区

Abstract

This study explored the spatial distribution characteristics and regional development effects of science and technology infrastructure in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). Taking 688 science and technology infrastructures as the research objects and 56 counties as the basic spatial units, it analyzed the spatial agglomeration and spatial differentiation patterns of science and technology infrastructures in 2020 in the GBA using the average nearest neighbor analysis method. This study combined the Geodetector output to illustrate the regional development effects of science and technology infrastructures in the GBA from four aspects: economic development level, residents' income, housing price, and population educational structure. The evaluation indicators for the four aspects are GDP per capita, per capita disposable income of urban residents, average housing price, and the number of university-educated persons per 100000 people respectively. The results indicate that: 1) The science and technology infrastructures show a remarkable spatial clustering distribution, mainly concentrated in the core area of Guangzhou, Nanshan District of Shenzhen, and the southern area of Hong Kong, with significant spatial differentiation and polarization at the county scale. 2) The science and technology infrastructure distribution in the GBA has a significant positive impact on the spatial patterns of population educational structure, economic development level, and housing price, showing a regional development effect. 3) The regional development effects of different science and technology infrastructures vary. The basic research science and technology infrastructures have the highest impact on the educational structure of the population, and the applied science and technology infrastructures have the most obvious impact on the economic development level. This study provides an additional case for academic research on the innovation geography of the GBA and decision support for the optimal layout and allocation of science and technology infrastructures in the GBA, which has both scientific and practical values.

Keywords: science and technology infrastructure; innovation geography; regional effects of innovation; Guangdong-Hong Kong-Macao Greater Bay Area

PDF (12380KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王洋, 张虹鸥, 岳晓丽. 粤港澳大湾区科技基础设施的空间集聚与区域发展效应[J]. 地理科学进展, 2022, 41(9): 1702-1715 doi:10.18306/dlkxjz.2022.09.012

WANG Yang, ZHANG Hong'ou, YUE Xiaoli. Spatial agglomeration and regional development effects of science and technology infrastructures in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Progress in Geography, 2022, 41(9): 1702-1715 doi:10.18306/dlkxjz.2022.09.012

当今世界,创新能力已成为区域竞争力的核心要素[1-2]。研究表明,创新要素在全球尺度上高度集中在旧金山湾区、纽约湾区、东京湾区等湾区地带,呈现明显的不均衡分布[3]。这些湾区是全球创新驱动发展的典范,也是全球创新策源地和核心增长极[4]。粤港澳大湾区是与旧金山湾区、纽约湾区、东京湾区齐名的4个全球著名湾区之一,是连接中国与全球的重要门户区域,也是“一带一路”的核心节点区域。《粤港澳大湾区发展规划纲要》将“创新发展”作为该规划纲要的重要“关键词”,提出将粤港澳大湾区建设成为“具有全球影响力的国际科技创新中心”。创新驱动发展已成为当前粤港澳大湾区的关键战略路径[4-7],因而有必要进一步加强对粤港澳大湾区创新地理领域的研究。

创新驱动发展离不开创新要素的支撑,科技基础设施是创新活动的基础性关键要素之一[8-9],支撑着科学研究和产业创新等活动。狭义的科技基础设施可理解为大科学装置、实验室、工程研究中心等支撑科技创新活动的基础设施[8-10]。这些科技基础设施往往依托著名高校、科研院所和创新能力较强的企业运行和管理。科技基础设施的数量和质量可间接反映出区域创新机构、创新平台、创新人才等创新要素的集聚水平。因此,科技基础设施是区域创新能力和创新水平的重要体现[11-16]

当前,学术界对粤港澳大湾区创新地理的研究主要集中在创新能力、潜力或效率的区域差异[12,16-21]、创新要素的非均衡布局或空间集聚[14,22-23]、创新网络特征[24-29]、区域协同创新与跨境合作[30-33]、区域创新系统[34-35]、区域创新链[36]、创新人才分布[37-38]、创新发展战略[6,39]等方面。上述成果对科学理解粤港澳大湾区创新地理的相关问题提供了重要参考和支撑,但对粤港澳大湾区科技基础设施的研究仍然寥寥。分析粤港澳大湾区科技基础设施的分布特征是理解其创新要素分布的重要切入点,因此有必要对该领域开展研究。

区域创新要素往往对区域经济社会发展产生重要影响,这是创新的区域效应。研究表明,创新和经济增长密切相关[40],是经济增长的核心动力之一[41]。已有一些学者研究了粤港澳大湾区创新的区域效应。Yang等[42]认为技术创新是粤港澳大湾区制造业转型升级的重要动力源之一;曹靖等[43]研究表明,2000—2017年,创新投入强度的提升促进了粤港澳大湾区绿色经济效率的上升。粤港澳大湾区的区域特征对其创新也有不可忽视的影响。例如,周四清等[44]通过研究证实,制造业集聚显著正向影响区域科技创新水平。上述研究主要从经济增长或制造业的角度研究粤港澳大湾区科技创新的区域效应。但仍需进一步拓展粤港澳大湾区科技创新区域效应的研究维度,例如科技创新要素对居民收入、住房价格、人口学历结构等社会民生领域的影响。此外,专门探讨科技基础设施的区域发展效应成果仍显不足。

鉴于此,本文以粤港澳大湾区688个科技基础设施为研究对象,以56个县区为基本研究单元,分析2020年粤港澳大湾区科技基础设施的空间集聚分布特征和空间差异格局。在此基础上,从经济水平、居住收入、住房价格、人口学历结构4个视角分析粤港澳大湾区科技基础设施布局的区域发展效应,并探索子类型差异。在研究对象方面,本文聚焦于科技基础设施这一重要创新要素,是对创新要素空间分布领域研究的补充。在研究视角方面,本文专门分析了科技基础设施的区域发展效应,并且将该效应从常见的经济与产业领域拓展到社会发展领域,具有一定的进展。研究可为粤港澳大湾区创新地理的学术研究提供案例补充,也为粤港澳大湾区科技基础设施的合理布局和优化配置提供决策支撑,具有学术意义和现实价值。

1 数据与方法

1.1 研究区域

根据《粤港澳大湾区发展规划纲要》,粤港澳大湾区由广州市、深圳市、珠海市、佛山市、东莞市、中山市、惠州市、江门市、肇庆市、香港特别行政区(简称香港)、澳门特别行政区(简称澳门)共同构成。由于粤港澳大湾区5个外围山区县(龙门、德庆、封开、怀集、广宁)的创新基础设施分布较少,且发展水平与珠三角核心区域差距较大,因此本文研究范围不包括上述5个山区县(图1)。

图1

图1   研究区域与研究单元划分

注:本图基于自然资源部标准地图服务网站下载的审图号为GS(2019)4342号的标准地图绘制,底图无修改。下同。

Fig.1   The study area and division of study units


在研究科技基础设施的空间分布与集聚时,以其点数据为基本研究对象,共688个。国务院2013年发布的《国家重大科技基础设施建设中长期规划(2012—2030年)》中指出,重大科技基础设施是为探索未知世界、发现自然规律、实现技术变革提供极限研究手段的大型复杂科学研究系统。根据该定义,本文的科技基础设施研究范畴主要包括大科学装置、重要的实验室、重要的工程/技术研究中心、重要的科技创新平台(表1)。在研究科技基础设施的区域发展效应时,参考王洋等[45]的研究单元划分思路,划分为56个基本研究单元。其中,香港、澳门各自为一个研究单元;对于东莞市,参考该市2017年园区统筹片区联动协调发展工作推进会的战略部署,将其划分的6个片区作为基本研究单元;对于中山市,参考《中山市域组团发展规划(2017—2035年)》,将其划分的5个组团作为基本研究单元,其他区域以县、县级市、区为基本研究单元。

表1   本文研究的科技创新基础设施类别

Tab.1  Categories of scientific and technological innovation infrastructure in this study

类型具体类别名称
大科学装置大科学装置
重要的实验室国家重点实验室(含香港、澳门,下同)、国家工程实验室、广东省实验室、广东省重点实验室、广东省公共实验室、中国科学院与香港地区联合实验室、香港实验所认可计划的部分实验所(仅包含“实验”名称的实验所)、中国科学院与澳门地区联合实验室、澳门土木工程实验室
重要的工程/技术研究中心国家工程研究中心、国家工程技术研究中心(含香港分中心,下同)
重要的科技创新平台国家地方联合创新平台(工程实验室和工程研究中心)、InnoHK创新香港研发平台、香港的“中央研究设施”

新窗口打开| 下载CSV


1.2 数据来源

珠三角9市的科技基础设施数据主要来源于广东省科学技术厅,并根据国家发展和改革委员会网站和其他相关网站进行补充;香港的科技基础设施数据主要来源于中华人民共和国香港特别行政区政府创新科技署、香港6所主要大学的官网;澳门的科技基础设施数据主要来源于澳门主要大学的官网和百度地图。上述数据的统计时间为2020年,科技基础设施的地理位置参考高德地图或百度地图绘制。

珠三角9市各县区的人均GDP、城镇居民人均可支配收入为2020年数据,来源于2021广东统计年鉴、2021东莞统计年鉴、2021中山统计年鉴。每10万人拥有大学(大专及以上,下同)受教育程度人数来源于珠三角9市各自的“第七次全国人口普查公报[1](第五号)”;住房价格数据时间为2020年12月,来源于“聚汇数据”(https://www.gotohui.com/)。“聚汇数据”是专门聚焦于房价等宏观数据查询的集合信息服务平台。香港的区域发展数据为2020年,来源于香港统计年刊(2021年版),其中,住房价格数据以40~69.9 m2的私人住宅为统计对象;澳门的区域发展数据为2020年,来源于澳门2020统计年鉴。其中,每10万人大学学历人口数根据中国澳门统计暨普查局,由观研天下(北京)信息咨询有限公司整理估算。数据时间为2019年第3季度。香港、澳门的相关数据全部根据2020年全年平均汇率转换为人民币,其收入数据按人均本地居民总收入统计。

1.3 研究方法

1.3.1 平均最近邻距离分析法

采用该方法计算粤港澳大湾区科技基础设施点数据的平均距离,进而判断科技基础设施分布的空间集聚性。根据实测的平均最近邻距离值与期望平均最邻近距离值的比率计算出R值,并通过R值的大小及其标准差Z值和显著性P值共同判断区域科技基础设施的分布是集聚分布、分散分布还是随机分布[46-48]

1.3.2 地理探测器

研究粤港澳大湾区科技基础设施分布的区域发展效应,本质上是以县区为单元,分析其科技基础设施数量对区域主要发展指标(例如人均GDP、收入、住房价格、高学历人口等)的影响关系,这种关系可以采用地理探测器[49-50]进行研究。地理探测器可以判断指标之间的因果关系。其主要思路是:根据科技基础设施点数量进行分层,如果科技基础设施与某个区域发展指标在空间分布上具有显著的一致性,就可认为科技基础设施对该种区域发展指标具有影响。其影响强度可采用地理探测力值(q值)测度,表示为[50-51]

q=1-1Nσ2h=1LNhσh2

式中:h=1,…, L为根据县区科技基础设施点数量进行的分层,L为划分的子区域数量;Nh为层h(即划分的子区域)的县区单元个数,N为粤港澳大湾区全部县区单元数(56个);σ2σ2h分别为粤港澳大湾区和层h的科技基础设施点数量的方差。q值取值区间为[0, 1],q值越大表明科技基础设施对该方面区域发展指标的影响强度越高。采用地理探测器软件(http://www.geodetector.org)检验q值的显著性。

1.3.3 科技基础设施的区域发展效应指标体系

区域的创新能力或创新要素往往可以对该区域的经济水平[52-53]、居民收入[54]、住房价格[55]、人口学历结构(科技人才)[56]等方面产生影响,进而形成创新的区域发展效应。科技基础设施作为关键的创新要素之一,在一定程度上代表了该区域的创新能力,因而也可能对上述4个方面的区域发展产生影响,同样具有区域发展效应。① 人均GDP是经济发展水平的经典代表性指标。理论上,科技基础设施可促进经济发展,科技基础设施数量越高的县区,其人均GDP预期越高。② 采用城镇居民人均可支配收入指标表征区域居民收入水平。理论上,创新能力较强、创新要素集聚较多的区域,居民的收入水平往往更高。③ Wu等[55]的研究表明创新具有资本化效应,即,创新要素是影响住房价格的重要因素,创新要素集聚的区域,其住房均价更高。④ 科技基础设施所依托的单位往往是高学历人口就业集聚地,因此创新能力较高的区域往往能够吸引更多的高学历人口入驻。本文采用每10万人拥有受大学教育程度人数代表区域的人口学历结构。综上,经济水平、居民收入、住房价格、人口学历结构是科技基础设施区域发展效应的重要体现,理论上,科技基础设施对上述4个区域发展指标都有正向的促进作用。这4个方面各自的评价指标、数据时间、数据来源及其统计方式见表2

表2   粤港澳大湾区科技基础设施区域发展效应的主要分析指标

Tab.2  Indicators of the regional development effect of science and technology infrastructure in the Guangdong-Hong Kong-Macao Greater Bay Area

区域发展效应的研究视角评价指标(单位)预期符号
经济水平F1人均GDP(元/人)正向
居民收入F2城镇居民人均可支配收入(元/人)正向
住房价格F3住房均价(元/m2)正向
人口学历结构F4每10万人拥有受大学教育程度人数(人/10万人)正向

注:香港、澳门的价格类数据已根据2020年平均汇率换算为人民币。

新窗口打开| 下载CSV


2 粤港澳大湾区科技基础设施分布的空间集聚与空间差异

2.1 粤港澳大湾区科技基础设施分布的空间集聚性

采用ArcGIS对各类科技基础设施进行空间化处理,形成粤港澳大湾区科技基础设施空间分布图(图2)。由图可知,粤港澳大湾区科技基础设施呈现明显的空间集聚性分布,主要位于广州的越秀区、天河区、海珠区、黄埔区,深圳的南山区、珠海的香洲区,以及香港、澳门。其中,国家级的科技基础设施更是显著集聚分布在上述区域。

图2

图2   粤港澳大湾区科技基础设施的空间分布

Fig.2   Spatial distribution of science and technology infrastructure in the Guangdong-Hong Kong-Macao Greater Bay Area


采用平均最近邻距离定量分析科技基础设施及其细分类别的空间集聚程度。在细分类别时,分别根据科技基础设施的重要程度和性质2种视角分类。按重要程度可将科技基础设施划分为大科学装置/国家级科技基础设施、其他科技基础设施2类,前者重要程度更高(级别更高)。其中,国家级科技基础设施包括国家重点实验室、国家工程实验室、国家工程研究中心、国家工程技术研究中心,其余类型(除大科学装置外)划归为其他科技基础设施,主要是省级(或特别行政区级)科技基础设施。按科技基础设施的性质可将其划分为基础研究类和应用类。其中,基础研究类偏向于基础科学创新,包括大科学装置、国家重点实验室、广东省实验室、广东省重点实验室(学科类)、广东省公共实验室、InnoHK创新香港研发平台、中国科学院与香港地区联合实验室、香港实验所认可计划的部分实验所(设置在大学)、香港的“中央研究设施”、中国科学院与澳门地区联合实验室。而应用类科技基础设施偏向于工程、技术和企业生产领域的创新,包括国家工程实验室、国家工程研究中心、国家工程技术研究中心、广东省重点实验室(企业类)、国家地方联合创新平台(工程实验室和工程研究中心)、香港实验所认可计划的部分实验所(设置在企业或管理机构)、澳门土木工程实验室。分别计算全部科技基础设施和按2种视角划分的科技基础设施子类的平均最近邻距离及其相关指标结果(表3)。表3显示,5种类别计算的P值全部小于0.01,且R值普遍较小,表明5种类别的科技基础设施全部呈现为强烈的集聚分布。这种分布特征符合创新活动呈现高度空间集聚的基本规律与特点[57],也是粤港澳大湾区高校、科研院所、创新型企业等创新机构高度集聚分布的另一种体现,因为绝大多数科技基础设施是依托上述创新机构设立和运行的。此外,科技基础设施的建立和使用也离不开创新人才的支撑作用,粤港澳大湾区的人才也同样呈现高度的集聚分布[58]。因而,粤港澳大湾区科技基础设施的高度空间集聚源于该区域创新机构和人才的空间集聚。值得注意的是,基础研究类科技基础设施的R值仅为0.2140,平均邻近距离仅847.28 m,空间集聚程度最高,这是由于其依托的大学/科研院所高度空间集聚所致,也符合基础研究类科技基础设施的空间布局特征。

表3   粤港澳大湾区5种类型科技基础设施点的空间分布情况

Tab.3  Spatial distributions of the five types of science and technology infrastructure sites in the Guangdong-Hong Kong-Macao Greater Bay Area

类别划分方式类别名称数量/个平均最近邻距离/m比率RZ得分P分布特征
按重要程度划分大科学装置和国家级科技基础设施1003751.730.4737-10.0691<0.001强烈集聚
其他科技基础设施5881403.580.3348-30.8590<0.001强烈集聚
按性质划分基础研究类科技基础设施413847.280.2140-30.5587<0.001强烈集聚
应用类科技基础设施2752999.140.4892-16.2044<0.001强烈集聚
全部科技基础设施6881247.530.3219-34.0279<0.001强烈集聚

新窗口打开| 下载CSV


为进一步探索粤港澳大湾区科技基础设施的集聚区域,采用ArcGIS软件将研究区按照2 km×2 km划分成4 km2的网格单元,并计算每个网格单元内的科技基础设施数量。在此基础上,利用ArcScene软件生成4 km2网格尺度下科技基础设施数量的三维形式空间分布示意图(图3),该图可清晰地展示出粤港澳大湾区科技基础设施分布的集聚区。图中表明,粤港澳大湾区科技基础设施集聚分布在少数区域,这些区域位于广州的核心区(天河、越秀、海珠)、深圳的南山区、香港南部地区(九龙、港岛、新界南部),形成“广深港”科技基础设施的“三极”式分布。另外,澳门、珠海的香洲区、广州的番禺区(大学城)和黄埔区也集聚分布着一些科技基础设施。这种空间集聚格局与已有粤港澳大湾区高新技术企业[22]、人才[58]、战略性产业技术创新[59]、专利产出[20]、知识生产[24]等空间集聚格局相呼应,也体现出科技基础设施与其他类型创新要素或创新产出的空间耦合特征。

图3

图3   粤港澳大湾区4 km2网格科技基础设施数量空间分布的三维示意图

Fig.3   3D schematic illustration of the spatial distribution of the number of science and technology infrastructures in the 4 km2 grids in the Guangdong-Hong Kong-Macao Greater Bay Area


2.2 粤港澳大湾区科技基础设施分布的空间差异与空间极化

根据粤港澳大湾区各县区单元的科技基础设施数量,按≤4、5~9、10~19、20~39、≥40由低到高分为5个等级,分别定义为科技基础设施数量的低、中低、中等、中高、高水平区。根据该分级,绘制出粤港澳大湾区科技基础设施数量的空间差异格局图(图4)。图4表明,粤港澳大湾区科技基础设施呈现明显的空间差异格局。科技基础设施的高水平区为广州的核心区(天河区、越秀区、海珠区)、深圳南山区和香港;中高水平区分布在广州的近郊区(黄埔区、番禺区、白云区);中水平区分布在澳门、珠海香洲区、佛山顺德区、东莞松山湖片区、深圳福田区;中低水平区为深圳的龙岗区和光明区,佛山的三水区、南海区、禅城区,中山的东部组团,惠州的惠城区,肇庆的端州区;其余县区全部为低水平区。从不同等级的县区数量分布看,低水平区的县区数量最多,达35个,占全部县区研究单元的62.5%,而高水平、中高水平的县区数量仅分别为5个和3个。值得注意的是,高和中高水平的8个县区的科技基础设施总数高达516个,占粤港澳大湾区的75%。而其余48个县区的科技基础设施总数仅占粤港澳大湾区的25%。这再次印证了粤港澳大湾区科技基础设施集聚分布在少数县区的特征,也显示出科技基础设施分布的空间极化现象。广州核心区、深圳南山区、香港是科技基础设施布局的“三极”。科技基础设施集聚分布在上述“三极”也与当前粤港澳大湾区的区域发展格局与空间结构[60]相符合。广州、深圳、香港是具有全球影响力的城市,也是粤港澳大湾区的3个核心城市和网络联系中心[61],其经济发展水平高,对创新活动的支撑能力强,是粤港澳大湾区创新要素的核心流入地和创新基础设施布局的首选地。广州核心区拥有多所高校和科研院所,具有人才集聚优势;深圳南山区集聚了多家著名的科技创新型企业,技术研发能力强,资本支撑能力高;香港拥有5所QS(Quacquarelli Symonds)世界排名Top100的大学(2021年),在原始创新、知识生产和国际化人才方面具有较大优势。这些优势使得科技基础设施集聚分布在上述“三极”区域。

图4

图4   粤港澳大湾区科技基础设施数量的空间差异格局

Fig.4   Spatial differentiation pattern of the number of science and technology infrastructures in the Guangdong-Hong Kong-Macao Greater Bay Area


3 粤港澳大湾区科技基础设施的区域发展效应

3.1 粤港澳大湾区科技基础设施区域发展效应的主要指标及其空间格局

利用Jenks最佳自然断裂法分别对上述4个区域发展指标数据进行分级(划分为5级),采用GIS技术绘制出粤港澳大湾区经济水平、居民收入、住房价格、人口学历结构的空间分异格局图(图5)。总体上,广州、深圳、香港、澳门的区域发展指标普遍较高,而珠三角外围区域(肇庆、江门、惠州)普遍较低。

图5

图5   粤港澳大湾区主要区域发展指标的空间分异格局

Fig.5   Spatial differentiation pattern of major regional development indicators in the Guangdong-Hong Kong-Macao Greater Bay Area


3.2 粤港澳大湾区科技基础设施的区域发展效应及其差异性

采用地理探测器分别测度县区科技基础设施数量对人均GDP、城镇居民人均可支配收入、住房均价、每10万人拥有受大学教育程度人数影响的显著性和影响强度,以便分析科技基础设施的区域发展效应。这是因为,地理探测器比一般统计方法(例如相关分析)更加确信且可以强烈显示因果关系,原因在于,变量之间在二维空间分布的一致性比其在一维曲线的一致性难度更大[50]。在此基础上,根据科技基础设施性质(基础研究类、应用类)划分为子类型分别进行地理探测器分析,目的是探索基础创新研究和应用创新研究的区域发展效应差别。根据县区科技基础设施数量对研究区分层,采用分位数法(Quantile)划分为5层,科技基础设施数量由低到高的阈值分别为0~1、2~3、4~7、8~15、≥16。为了便于结果对比,子类型样本(基础研究类科技基础设施、应用类科技基础设施)的分层阈值与上述总体样本相同。基于该分层方法分别测度粤港澳大湾区科技基础设施数量(含子类型数量)对上述4个区域发展指标的探测力值及其显著性(表4),根据该结果判断科技基础设施的区域效应,以及不同类型科技基础设施区域效应的差异性。

表4   粤港澳大湾区科技基础设施数量对4个区域发展指标影响的地理探测结果

Tab.4  Geographical detection results of the influence of the number of science and technology infrastructures on the four regional development indicators in the Guangdong-Hong Kong-Macao Greater Bay Area

样本类别人均GDP城镇居民人均可支配收入住房均价每10万人拥有受大学教育程度人数
全部科技基础设施0.39170.15820.34460.5255
(<0.001)(0.156)(0.004)(<0.001)
基础研究类科技基础设施0.35180.31010.34710.4776
(0.048)(0.083)(0.018)(0.016)
应用类科技基础设施0.51010.09380.41520.4281
(<0.001)(0.545)(0.008)(0.021)

注:括号内为地理探测器计算结果的显著性P值。

新窗口打开| 下载CSV


从全部样本的地理探测显著性看,科技基础设施数量对人均GDP、住房均价、每10万人拥有受大学教育程度人数的影响在0.01水平上显著,对城镇居民人均可支配收入的影响不显著。在探测力值方面,科技基础设施数量对每10万人拥有受大学教育程度人数空间分异的影响强度最大(探测力值达到0.5255),这表明粤港澳大湾区科技基础设施对人口学历结构、经济水平、住房价格具有显著的区域发展效应。并且,科技基础设施的区域发展效应强度存在差异性,对人口学历结构的影响最为明显;其次为经济水平和住房价格,而对居民收入的影响最弱(不显著)。

从子类型样本的地理探测器计算结果看,应用类科技基础设施对人均GDP、住房均价的影响在0.01水平上显著,探测力值分别为0.5101和0.4152,影响强度高于基础研究类科技基础设施对这2个因素的影响。从各自样本类型的探测力值看,基础研究类科技基础设施对人口学历结构的影响强度最高,而应用类科技基础设施对经济水平的影响强度最高。这种区域发展效应的差异特点符合科技基础设施的性质特征。

4 结论与讨论

本文通过研究粤港澳大湾区科技基础设施分布的空间特征及其区域发展效应,得出以下主要结论:第一,粤港澳大湾区科技基础设施呈现高度的空间集聚性分布,主要集聚在广州核心区、深圳南山区和香港南部地区。基础研究类科技基础设施的空间集聚程度最高。第二,粤港澳大湾区各县区单元的科技基础设施数量的空间差异与空间极化现象显著,高水平区和中高水平区分布在广州核心区、深圳南山区、香港、广州近郊区,上述区域的科技基础设施数量占粤港澳大湾区的75%。第三,粤港澳大湾区科技基础设施分布对人口学历结构、经济水平、住房价格的空间格局具有显著的正向影响,体现出明显的区域发展效应。第四,不同性质科技基础设施的区域发展效应有所差别。基础研究类科技基础设施对人口学历结构的影响最强,而应用类科技基础设施对经济水平的影响强度最高。

本文从科技基础设施的角度验证了创新要素的高度集聚性,这与制造业分布格局有所差别。“集聚”是解释创新的重要研究范式之一,这是因为创新要素的集聚更容易推动知识共享及其溢出效应[62]。创新要素趋向于在空间上高度集聚并相互作用[63]。本文的结论验证了创新研究的“集聚”范式。在粤港澳大湾区创新地理的案例研究领域,本文得出的粤港澳大湾区科技基础设施呈现高度空间集聚性分布的结论呼应了粤港澳大湾区创新要素集聚和非均衡分布的相关研究结论[14,22-23]。粤港澳大湾区科技基础设施存在明显空间差异的结论也对相关案例研究(创新要素的空间差异)[12,16-21]形成研究视角的补充。

粤港澳大湾区科技基础设施的区域发展效应在已有研究中关注不多,尤其是对人口学历结构和住房价格的影响。而不同类型科技基础设施的区域发展效应具有差异性也是本文结论的另一价值。基础研究类科技基础设施的核心区域发展效应体现在对高学历人才的吸引,进而促进人口学历结构的提升;应用类科技基础设施的最显著区域发展效应是提高区域经济发展水平。值得注意的是,无论哪种类别的科技基础设施都对住房价格有显著的正向促进作用,该结论从科技基础设施的视角验证了“创新的资本化”理论[55]

当前,一批重大科技基础设施在粤港澳大湾区开工建设。《粤港澳大湾区发展规划纲要》和《广东省科技创新“十四五”规划》也都将科技基础设施建设作为粤港澳大湾区创新发展的重要举措。在粤港澳大湾区科技基础设施规划布局时,建议顺应科技基础设施空间集聚分布的基本特点和理论规律,以集聚布局的空间策略为主,打造若干具有全球影响力和创新能力的科技基础设施“集聚区”,进而推动形成创新要素“极核”,发挥其区域发展的带动效应,成为粤港澳大湾区创新驱动发展的重要增长极和发动器。

值得注意的是,科技基础设施名目繁多、类别多样而复杂,本文仅采用了具有一定级别称号(例如国家级、省级)的科技基础设施作为研究对象,未来可根据数据获取情况纳入更多的科技基础设施类型,进一步扩展研究对象。考虑到科技基础设施的创新成果产出也是未来可进一步拓展的研究方向。此外,未来可采用回归分析法进一步验证本文科技基础设施区域发展效应的相关结论。

参考文献

Boyer J, Ozor J, Rondé P.

Local innovation ecosystem: Structure and impact on adaptive capacity of firms

[J]. Industry and Innovation, 2021, 28(5): 620-650.

DOI:10.1080/13662716.2021.1891407      URL     [本文引用: 2]

Secundo G, Ndou V, Del Vecchio P, et al.

Sustainable development, intellectual capital and technology policies: A structured literature review and future research agenda

[J]. Technological Forecasting and Social Change, 2020, 153: 119917. doi: 10.1016/j.techfore.2020.119917.

URL     [本文引用: 1]

Adler P, Florida R, King K, et al.

The city and high-tech startups: The spatial organization of Schumpeterian entrepreneurship

[J]. Cities, 2019, 87: 121-130.

DOI:10.1016/j.cities.2018.12.013      URL     [本文引用: 1]

张虹鸥, 吴康敏, 王洋, .

粤港澳大湾区创新驱动发展的科学问题与重点研究方向

[J]. 经济地理, 2021, 41(10): 135-142.

[本文引用: 2]

[ Zhang Hong'ou, Wu Kangmin, Wang Yang, et al.

Scientific issues and key research directions of innovation-driven development in the Guangdong-Hong Kong-Macao Greater Bay Area

Economic Geography, 2021, 41(10): 135-142. ]

[本文引用: 2]

刘毅, 杨宇, 康蕾, .

新时代粤港澳大湾区人地关系的全球模式与区域响应

[J]. 地理研究, 2020, 39(9): 1949-1957.

DOI:10.11821/dlyj020200820      [本文引用: 1]

全球化时代人口、产业、能源、贸易等关键生产要素跨区域快速流动,人地关系由静态走向动态,由孤立化走向网络化,地理尺度被充分放大,标志着人地关系从区域性向全球性转变。粤港澳大湾区作为我国对外开放的前沿阵地之一,改革开放四十年来其人地关系已经发生了深刻的变化,亟需重新认识和研究粤港澳大湾区人地关系的全球配置与区域响应模式,为粤港澳大湾区在全球和区域尺度合理配置人地关系核心要素,建设世界一流湾区提供理论支撑。本文在把握新时代人地关系的全球性转变基础上,对粤港澳大湾区人地关系研究进行了展望:① 从理论上探讨世界一流湾区人地关系从区域性转向全球性的一般模式和规律;② 分析改革开放以来粤港澳大湾区人地关系的全球配置过程及其驱动因素变化;③ 剖析全球模式下湾区内部的区域响应差异与区域协同机制;④ 探索“创新-产业-环境”关键系统全球模式的重构路径;⑤ 提出新时代粤港澳大湾区人地关系的优化与调控路径。

[ Liu Yi, Yang Yu, Kang Lei, et al.

Human-environment system in the Guangdong-Hong Kong-Macao Greater Bay Area: Global model and local response

Geographical Research, 2020, 39(9): 1949-1957. ]

[本文引用: 1]

叶玉瑶, 王景诗, 吴康敏, .

粤港澳大湾区建设国际科技创新中心的战略思考

[J]. 热带地理, 2020, 40(1): 27-39.

DOI:10.13284/j.cnki.rddl.003204      [本文引用: 2]

基于对全球创新格局与趋势的探讨,以及对国际科技创新中心内涵与特性的解读,剖析了粤港澳大湾区当前建设国际科技创新中心所具备的优势与面临的挑战,并对科技创新中心建设提出几点战略性的思考。当前粤港澳大湾区正处于整体迈进知识经济时期,创新要素在地理空间上高度集聚,创新生态条件不断完善,创新全球化的影响在区域内初显,拥有雄厚的制造业基础,市场对创新的需求极为可观,基本具备建设国际科技创新中心的条件。但同时,我们应该看到由于粤港澳一体化的制度障碍以及巨大的区域内部差距,粤港澳大湾区的创新发展还存在创新要素聚而不联、创新要素流动不畅、体制机制转换对接困难、关键核心技术受制于人等现实挑战。在充分发挥粤港澳互补优势、补齐短板的基础上,粤港澳大湾区应立足源头创新,将建设国际产业创新策源地作为立区之本;实施产业驱动,将建设国际产业科技创新中心作为核心功能;推进制度创新,将建设协同创新示范区作为关键突破。以源头创新促产业创新,以制度改革推协同创新,最终实现粤港澳大湾区创新协同与一体化融合发展。

[ Ye Yuyao, Wang Jingshi, Wu Kangmin, et al.

Strategic thinking regarding building an international science and technology innovation center in the Guangdong-Hong Kong-Macao Greater Bay Area

Tropical Geography, 2020, 40(1): 27-39. ]

DOI:10.13284/j.cnki.rddl.003204      [本文引用: 2]

As capital’s pursuit of knowledge has become an increasingly significant global trend, scientific and technological innovations have gradually replaced the development mode of factor-driven and resource consumption, supporting as the driving force of economic development in the new era by influencing the industry transformation and promoting new formats, along with fundamentally guiding the transformation of the leading functions of cities or regions toward scientific and technological innovation. Furthermore, the economic competition among cities or regions around the world is more prominently manifested in the competition of science and technology. As the embodiment and core support of a country’s comprehensive scientific and technological strengths, a scientific and technological innovation center could play a significant value-added role by occupying a leading, dominant position in the global value grid. This is an important measure for many countries and regions to cope with the challenges of each new round of scientific and technological innovations. Moreover, it also enhances national competitiveness. Based on the discussion of global innovation patterns and trends, as well as the interpretation of the connotation and characteristics of international technology innovation centers, this paper analyzes the advantages and challenges that the Guangdong-Hong Kong-Macao Greater Bay Area might face in constructing a global technology innovation center, and some strategies are suggested for the future development. At present, the Guangdong-Hong Kong-Macao Greater Bay Area are in a period of entering knowledge economy as a whole, wherein innovation elements are highly concentrated geographically, and innovation ecological conditions are constantly improved. The impact of innovation globalization is emerging in this region, and the demand for innovation is as strong as the manufacturing industry foundation within this area. The basic conditions for the construction of an international science and technology innovation center are sufficient. However, owing to institutional obstacles in integrating Guangdong-Hong Kong-Macao Greater Bay Area and the huge intra-regional gap, some practical challenges in innovation development of this region still exist, such as the disconnection of innovation elements, the unsmooth internal flow of innovation elements, the difficulty of system-mechanism transformation, and the dilemma of relying on importation of core technologies. To take benefit from the favorable characteristics of Guangdong, Hong Kong and Macao, and mitigate any inherent shortcoming, the construction should be based on the establishing of a hotbed of international industrial innovation. In the meantime, this region should choose the construction of an international industrial science and technology innovation center as its core priority. This will accelerate institutional innovation and consider the construction of collaborative innovation demonstration zone as the key to breakthrough. Boost industrial innovation by enhancing the ability of original innovation, promote collaborative innovation by institutional reform, and finally realize the coordinated and integrated development of Guangdong-Hong Kong-Macao Greater Bay Area’s innovation.

王云, 杨宇, 刘毅.

粤港澳大湾区建设国际科技创新中心的全球视野与理论模式

[J]. 地理研究, 2020, 39(9): 1958-1971.

DOI:10.11821/dlyj020200367      [本文引用: 1]

建设国际科技创新中心是粤港澳大湾区新时代最有共识、最有优势、最富挑战的战略方向,亟需国际科技创新中心建设的理论探索。国内外经典创新系统理论更加专注于创新系统内部,注重单一空间的创新要素与创新活动组织问题,忽视了全球和区域之间要素的关联模式,缺乏在全球视野下宏观与微观结合的综合观察。由此,本文在总结国内外经典创新系统理论的基础上,构建了全球视野下的以“科技”和“人才”为核心,以“科技-产业-全球生产网络”和“人才-环境-世界城市网络”为链条的国际科技创新中心理论模式,认为国际科技创新中心是全球创新网络、全球生产网络和世界城市网络三重网络结构的核心节点,建设国际科技创新中心需要实现三重网络的协同效应。在这样的理论框架下,分析了粤港澳大湾区双核心与双链条的发展情况,并以此提出了粤港澳大湾区建设国际科技创新中心的路径和相关建议。

[ Wang Yun, Yang Yu, Liu Yi.

The Guangdong-Hong Kong-Macao Greater Bay Area developing into an international innovation and technology hub: A global perspective and theoretical model

Geographical Research, 2020, 39(9): 1958-1971. ]

DOI:10.11821/dlyj020200367      [本文引用: 1]

Developing the region into an international innovation and technology hub is the most common, the most advantageous, and the most challenging strategic direction for the Guangdong-Hong Kong-Macao Greater Bay Area in the new era. There is an urgent need for the theoretical research and developing studies of the international innovation and technology hubs. Classical theories of the innovation systems focus more on the interior of innovation systems, paying attention to innovation elements and organization of innovation activities in a single space, but neglect the inextricable link between global and local elements and organizations, lacking comprehensive observations combining macro and micro perspectives. Therefore, on the basis of summarizing the classic innovation system theories, this paper constructs a theoretical model with global vision for the Guangdong-Hong Kong-Macao Greater Bay Area constituting international innovation and technology hubs: "Science and technology" and "talent" are the cores, and "science and technology-industry-global production network" and "talent-environment-world city network" are two chains. Focusing on science and technology and the pooling of talents, it is needed to gather elements of innovative resources, enhance regional innovation capabilities, drive industrial transformation and upgrading, and improve urban functions and environments, so as to reshape the role in the global production network and the world city network. It is considered that the international innovation and technology hubs are the core nodes of the triple networks: global innovation network, global production network and world city network. To develop into an international science and technology innovation center, it is necessary to upgrade its strength and position in the three networks at the same time. Compared with the existing innovation system theories, the new model attaches importance to the internal and external relations with both global and local visions, in which the chain structure avoids the simple listing of elements, but emphasizes the mechanisms of the innovation system. Under this theoretical framework, the double-cores (talent & science and technology) and double-chains (science and technology-industry-global production network & talent-environment-world city network) of the Guangdong-Hong Kong-Macao Greater Bay Area are analyzed, and the paths for the Guangdong-Hong Kong-Macao Greater Bay Area developing into an international technological innovation center are proposed. This paper provides an explanatory tool for the organizing similarities and differences between international innovation and technology hubs under the background of globalization, which is a supplement to the theories of innovation systems.

罗扬, 龚美娟, 杨艳红, .

“十四五”时期区域科技基础设施体系架构研究: 以江苏省为例

[J]. 科技进步与对策, 2021, 38(22): 43-49.

[本文引用: 2]

[ Luo Yang, Gong Meijuan, Yang Yanhong, et al.

Research on the system architecture of regional science and technology infrastructure during the 14th five year plan period: Based on the empirical analysis of Jiangsu Province

Science & Technology Progress and Policy, 2021, 38(22): 43-49. ]

[本文引用: 2]

陈套.

重大科技基础设施内涵演进与发展分析

[J]. 科学管理研究, 2021, 39(5): 21-26.

[本文引用: 2]

[ Chen Tao.

Connotation evolution and development analysis on major science and technology infrastructure

Scientific Management Research, 2021, 39(5): 21-26. ]

[本文引用: 2]

常旭华, 仲东亭.

国家实验室及其重大科技基础设施的管理体系分析

[J]. 中国软科学, 2021(6): 13-22.

[本文引用: 1]

[ Chang Xuhua, Zhong Dongting.

Study on management system of nation's laboratory and its large research infrastructure

China Soft Science, 2021(6): 13-22. ]

[本文引用: 1]

吕萍, 柳卸林.

开放性对科学创新和技术创新的影响: 以国家重点实验室为例

[J]. 中国管理科学, 2011, 19(6): 185-192.

[本文引用: 1]

[ Lv Ping, Liu Xielin.

The impact of openness on scientific innovation and technological innovation: Evidence from national key laboratories of China

Chinese Journal of Management Science, 2011, 19(6): 185-192. ]

[本文引用: 1]

林善泉, 刘嘉丽, 刘沛.

区域创新能力与潜力评价: 以珠三角国家自主创新示范区为例

[J]. 现代城市研究, 2019, 34(4): 60-68.

[本文引用: 3]

[ Lin Shanquan, Liu Jiali, Liu Pei.

Regional innovation capabilities and potentials evaluation: A case study of the Pearl River Delta national independent innovation demonstration zone

Modern Urban Research, 2019, 34(4): 60-68. ]

[本文引用: 3]

张玲玲, 王蝶, 张利斌.

跨学科性与团队合作对大科学装置科学效益的影响研究

[J]. 管理世界, 2019, 35(12): 199-212.

[本文引用: 1]

[ Zhang Lingling, Wang Die, Zhang Libin.

Research of the influence of interdisciplinarity and team cooperation on the scientific effects based on large-scale scientific facilities

Journal of Management World, 2019, 35(12): 199-212. ]

[本文引用: 1]

邱坚坚, 刘毅华, 袁利, .

粤港澳大湾区科技创新潜力的微观集聚格局及其空间规划应对

[J]. 热带地理, 2020, 40(5): 808-820.

DOI:10.13284/j.cnki.rddl.003270      [本文引用: 3]

创新活动发生在具体地点上,其空间黏性已有广泛关注,但当前研究却未能深入微观尺度的创新空间集聚,难以精细化识别创新潜力。文章结合知识、技术、环境三维创新的角度搭建基于兴趣点(POI)微观数据的科技创新潜力空间指标体系,所得结果与粤港澳大湾区都市发展现状高度一致。同时发现:1)科技创新潜力的空间集聚显著,其中知识创新向核集聚,技术创新呈轴带式外溢,但创新环境存在较大协同缺失;2)热点分布呈现出点群集聚、组团联动、多中心并存等特征,形成智慧科研型、产业科技型、环境孵化型、综合发展型等16个创新集聚区,受到“亲水性”布局与传统行政力量的重要影响;3)微观视域下同时体现了空间上的功能性分异及较强的边界模糊效应,广–莞–深–港创新廊道基本成型,不过区域多层次非均衡分布与创新深度融合仍需改善。根据研究结果,需要进一步加大创新的环境营造与三维融合,增强重要创新节点的辐射,明确创新产业差异化定位,深化创新活动的无界互动融通,从而推动湾区创新协同发展。

[ Qiu Jianjian, Liu Yihua, Yuan Li, et al.

Mapping the micro-scale scientific and technological innovation potentials of Guangdong-Hong Kong-Macao Greater Bay Area: A response to spatial planning

Tropical Geography, 2020, 40(5): 808-820. ]

DOI:10.13284/j.cnki.rddl.003270      [本文引用: 3]

Innovation regularly appears at different venues and areas within cities, and its spatial stickiness has been widely studied and confirmed. However, most current research on spatial innovation has not been conducted in a micro-scale manner to decode the inner-city potentials. From an urban research perspective, this makes understanding the internal clustering mechanism a significant challenge. Thus, this article uses Points Of Interest (POI) data to explore a Scientific and Technological (S&T) spatial index system focusing on innovation potential with a consideration of three dimensions: knowledge, technology, and environment. It analyzes the micro-scale agglomeration structure of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). First, an inverted U-style innovative core belt embracing the Pearl River in the middle is formed. This area has more substantive innovation potentials on the east than the west coast. Guangdong-Foshan and Shenzhen-Dongguan innovation clusters are then built simultaneously. In both practice and theory, these research findings are consistent with the metropolitan agglomeration pattern and research on the GBA. Additional results are: 1) A notable cluster effect emerges in the spatial distribution of GBA's innovation potentials. Considering the division of dimension, knowledge-based innovation is likely to be led by Guangzhou and Hong Kong, while technological innovation stretches in strong belt-style spillovers along the Guangzhou-Shenzhen S&T Innovation Corridor. However, there is a dearth of innovation in these incubators' environments, and collaboration between them needs to be drastically improved. 2) The hotspot structure shows characteristics such as node clustering, group linking, and multicenter coexistence, while 16 Innovation-intensive Zones (IIZs) emerged in four distinct innovative pathways. These are knowledge-and-research-based, industry-led, environment-incubated, and comprehensively developed, and being close to rivers and streams are significantly influenced by the hydrophilic clustering effect, with a free and comfortable atmosphere inspiring innovation. Traditional administrative forces also have a significant impact, especially on the peripheral areas where innovative activities rely on government planning and the pull-forces from downtown. 3) From the perspective of industry differences, a robust functional differentiation is spatially mirrored. The innovation of intelligent equipment manufacturing has a strong outward diffusion, and the energy, chemical and core electronic industries display an inward node effect. While biomedicine innovation spreads across the two core areas, it is necessary to strengthen information and communication in a broader region with higher potential. 4) In a micro-scale way, an indistinct boundary shapes the Guangzhou-Dongguan-Shenzhen-Hong Kong innovation corridor. However, the need is still urgent to calibrate the regional imbalance and intensify deeply-integrated innovation in light of the vast spatial differentiation and insufficient cooperation between the east and west coasts, the Pearl River Delta and Hong Kong-Macao, and the central and peripheral areas of innovation development. Based on these issues, it is essential to strengthen the emergence of an innovative environment and integrate it with knowledge-based and technology innovation. The aim is to promote the diffusion of pivotal innovative nodes and then specify the differentiated positions of innovative industries to create a region free from boundary constraints conducive to innovation, communication, and cooperation. Thus, for spatial planning in the GBA, the quest for a higher level of innovative potential is imperative, and the integration of collaborative innovation needs to be pursued vigorously.

徐慧芳, 侯沁江, 陈思思, .

国家重大科技基础设施的社会经济影响评估研究综述

[J]. 科技管理研究, 2021, 41(13): 25-34.

[本文引用: 1]

[ Xu Huifang, Hou Qinjiang, Chen Sisi, et al.

Summary of research on socio-economic impact assessment of large research infrastructure

Science and Technology Management Research, 2021, 41(13): 25-34. ]

[本文引用: 1]

赵卿.

粤港澳大湾区城市创新驱动能力测度

[J]. 统计与决策, 2021, 37(22): 59-63.

[本文引用: 3]

[ Zhao Qing.

Measurement of urban innovation driving ability in Guangdong-Hong Kong-Macao Greater Bay Area

Statistics & Decision, 2021, 37(22): 59-63. ]

[本文引用: 3]

覃艳华, 曹细玉.

粤港澳大湾区城市群科技协同创新研究

[J]. 华中师范大学学报(自然科学版), 2019, 53(2): 255-262.

[本文引用: 2]

[ Qin Yanhua, Cao Xiyu.

Research on urban agglomeration of Guangdong-Hong Kong-Macao Greater Bay Area collaborative innovation of science and technology

Journal of Central China Normal University (Natural Sciences), 2019, 53(2): 255-262. ]

[本文引用: 2]

程风雨.

粤港澳大湾区都市圈科技创新空间差异及收敛性研究

[J]. 数量经济技术经济研究, 2020, 37(12): 89-107.

[本文引用: 2]

[ Cheng Fengyu.

Research on the spatial differences and convergence mechanism of technological innovation in the Guangdong-Hong Kong-Macao Greater Bay Area

The Journal of Quantitative & Technical Economics, 2020, 37(12): 89-107. ]

[本文引用: 2]

Ye W Z, Hu Y P, Chen L M.

Urban innovation efficiency improvement in the Guangdong-Hong Kong-Macao Greater Bay Area from the perspective of innovation chains

[J]. Land, 2021, 10(11): 1164. doi: 10.3390/land10111164.

URL     [本文引用: 2]

Wu K M, Wang Y, Zhang H O, et al.

Impact of the built environment on the spatial heterogeneity of regional innovation productivity: Evidence from the Pearl River Delta, China

[J]. Chinese Geographical Science, 2021, 31(3): 413-428.

DOI:10.1007/s11769-021-1198-4      URL     [本文引用: 3]

董会忠, 李旋, 张仁杰.

粤港澳大湾区绿色创新效率时空特征及驱动因素分析

[J]. 经济地理, 2021, 41(5): 134-144.

[本文引用: 2]

[ Dong Huizhong, Li Xuan, Zhang Renjie.

Spatial-temporal characteristics and driving factors of green innovation efficiency in Guangdong-Hong Kong-Macao Greater Bay Area

Economic Geography, 2021, 41(5): 134-144. ]

[本文引用: 2]

Wu K M, Wang Y, Ye Y Y, et al.

Relationship between the built environment and the location choice of high-tech firms: Evidence from the Pearl River Delta

[J]. Sustainability, 2019, 11(13): 3689. doi: 10.3390/su11133689.

URL     [本文引用: 3]

樊德良, 罗彦, 刘菁.

全球视角下的粤港澳大湾区创新发展研究

[J]. 南方建筑, 2019(6): 6-12.

[本文引用: 2]

[ Fan Deliang, Luo Yan, Liu Jing.

Research on the innovative development of the Guangdong-Hong Kong-Macao Greater Bay Area from a global perspective

South Architecture, 2019(6): 6-12. ]

[本文引用: 2]

马海涛, 黄晓东, 李迎成.

粤港澳大湾区城市群知识多中心的演化过程与机理

[J]. 地理学报, 2018, 73(12): 2297-2314.

DOI:10.11821/dlxb201812003      [本文引用: 2]

基于1990-2016年“Web of Science”核心合集所收录的科研论文合著数据,借助基尼系数测度属性和功能多中心性的方法,对粤港澳大湾区城市群的知识多中心性及其知识网络的演化进行了研究。结果发现:① 伴随着粤港澳大湾区城市群知识生产总量的持续增长,其多中心性程度呈现出阶段性、阶梯式提升的特征,分别经历了波动、增长和分化的发展阶段,港澳回归后的2000-2010年间是多中心性快速增长的重要阶段。② 粤港澳大湾区城市群在区域、国家和全球尺度上的功能多中心性程度随着尺度增加逐级递减,进一步证实了功能多中心性的尺度规律性;而且发现了多中心在演化中的尺度敏感性,全球尺度上的多中心性会存在不确定的峰值,而区域尺度上的多中心性可能会持续增加。③ 城市群多中心的演化是受制度接近、地理接近和等级接近影响,在研究人员移动、科研单位联动和政府政策推动及其行动主体间的相互作用下实现的,多中心程度的增加有助于推动粤港澳大湾区城市群构建科研协同创新共同体。

[ Ma Haitao, Huang Xiaodong, Li Yingcheng.

The evolution and mechanisms of megalopolitan knowledge polycentricity of Guangdong-Hong Kong-Macao Greater Bay Area

Acta Geographica Sinica, 2018, 73(12): 2297-2314. ]

DOI:10.11821/dlxb201812003      [本文引用: 2]

The concept of megalopolis, since its original inception six decades ago, has inspired many new terms that mainly describe large-scale urbanized forms such as megaregions and polycentric urban regions. However, recent studies have increasingly focused on the two key functions that megalopolises act as an incubator of new ideas and trends and as a hub that articulates knowledge exchange at the megalopolitan, national, and global scales. While the recent studies have mainly analyzed the functional aspects of megalopolis based on China's Yangtze River Delta region, this paper investigates the evolving process and mechanisms of knowledge collaboration within and beyond Guangdong-Hong Kong-Macao Greater Bay Area (GBA) - one of the most promising and vibrant megalopolises in China. In addition, the GBA megalopolis is unique because it contains Hong Kong and Macao, which have a different political system from China's mainland. Drawing upon a dataset of publications that were indexed in Web of Science Core Collection during the 1990-2016 period, this paper uses the Gini coefficient to measure the degree of knowledge polycentricity of the GBA megalopolis. Here, knowledge polycentricity is further classified into attribute polycentricity of knowledge production and functional polycentricity of knowledge collaboration within and beyond the GBA megalopolis. Whereas the attribute polycentricity refers to the distribution inequality of the total publications of GBA cities, the functional polycentricity represents the distribution inequality of GBA cities' knowledge collaboration at different geographical scales. Our empirical results show: (1) knowledge production of the GBA megalopolis as a whole has experienced a robust and continuous growth. The degrees of both attribute polycentricity and functional polycentricity have also been on the increase in general, although there are some fluctuations in early years and some deviations in recent years. During the ten years after Hong Kong and Macao returned to China (the 2000-2010 period), the degree of knowledge polycentricity of the GBA megalopolis especially enjoyed the fastest rise; (2) The degree of functional polycentricity decreased with the expansion in the geographical scales at which it is measured, confirming the findings of previous studies that functional polycentricity is scale-dependent. Moreover, we find that the degree of functional polycentricity becomes more fluctuated at the global scale while it tends to increase continuously at the megalopolitan scale; (3) The evolving process of knowledge polycentricity of the GBA megalopolis is influenced by institutional proximity, geographical proximity and status proximity between cities. Specifically, the mobility of researchers, the collaboration of universities and research institutes, and the coordination of local governments are three major forces promoting the evolution of knowledge polycentricity of the GBA megalopolis. Overall, the increasing knowledge polycentricity would be of significance for the GBA megalopolis to form a knowledge-driven region of collective collaboration.

高爽, 王少剑, 王泽宏.

粤港澳大湾区知识网络空间结构演化特征与影响机制

[J]. 热带地理, 2019, 39(5): 678-688.

DOI:10.13284/j.cnki.rddl.003174      [本文引用: 1]

以2000—2018年国内外期刊数据库合作论文数据为基础,借助社会网络分析和空间结构指数法分析了粤港澳大湾区知识空间网络结构演化特征与影响因素,结果发现:1)知识网络格局由广州的“一家独大”逐渐演变为广州、深圳、香港“齐头并进”的发展态势。香港虽然处于知识网络的核心位置,但受行政壁垒的影响,主要与广州、深圳高等级的城市建立紧密的知识合作联系。2)粤港澳大湾区知识联系网络呈现“核心—边缘”结构,西部地区知识联系远低于东部地区,虽然研究期内湾区的知识网络的极化特征得到一定的缓解,但不均衡性仍然显著。3)湾区知识活动主体的自身需求是促进城市间知识合作的内在驱动力,知识环境和知识联系通道是区域知识合作网络外在推动力,在内生作用和外生作用的共同影响下,知识合作产出得以实现,粤港澳大湾区知识网络得以发展。

[ Gao Shuang, Wang Shaojian, Wang Zehong.

Evolution of the structural characteristics and factors influencing the knowledge network of the Guangdong-Hong Kong-Macao Greater Bay Area

Tropical Geography, 2019, 39(5): 678-688. ]

DOI:10.13284/j.cnki.rddl.003174      [本文引用: 1]

Increasing globalization and informatization has enhanced the intercity exchange of information, materials, and energy. Cities no longer represent isolated systems. Instead, they are closely linked to each other, forming regional or global city network systems. Therefore, the study of urban networks has attracted massive attention in human geography and urban planning. In particular, the emergence of the concept of “space of flow” provides a new perspective and paradigm for the interpretation of regional spatial structure. Based on the data collected from domestic and foreign journal database published from 2000 to 2018, this paper uses social network analysis method and spatial structure index method to explore the evolution process of the overall characteristics, organizational structure, and the spatial pattern of the knowledge network in Guangdong-Hong Kong-Macao Greater Bay Area. Furthermore, it identified the evolution trend of factors influencing the knowledge network in the Bay Area. The results also revealed the following: 1) Over the duration of the research, publications in the Greater Bay Area significantly increased. The pattern of the knowledge network gradually evolved from the “single power” represented by Guangzhou to “simultaneous development” that included Guangzhou, Shenzhen, and Hong Kong. Although Hong Kong is at the core of the knowledge network, it establishes close knowledge cooperation primarily with Guangzhou and Shenzhen due to administrative barriers. 2) The knowledge network of the Guangdong-Hong Kong-Macao Greater Bay Area represents a “core-edge” structure with the knowledge connection in the western region significantly lower than that in the eastern region. The knowledge network densities and spatial structure indices of the Guangdong-Hong Kong-Macao Greater Bay Area suggest an increasing volatility. In 2016, the knowledge network density of the Bay Area attained the maximum value, indicating the development and maturity of the overall knowledge connection of the Guangdong-Hong Kong-Macao Greater Bay Area. In addition, the spatial structure indices demonstrate an alleviation of polarization characteristics of knowledge networks in the Bay Area, despite persistent significant imbalance. 3) The demand of the knowledge activity actors such as universities and scientific research institutions in the Bay Area is the internal driving force promoting knowledge cooperation among cities. The knowledge environment and the knowledge connection channels are the external driving forces of the regional knowledge cooperation network. The influence of endogenous and exogenous factors is responsible for the output of knowledge cooperation, resulting in the development of the knowledge network in the Guangdong-Hong Kong-Macao Greater Bay Area. This study provides a reference for the development of innovative collaborative paths in the Guangdong-Hong Kong-Macao Greater Bay Area by refining the characteristics of Bay Area’s knowledge network.

Feng Z J, Cai H C, Zhou W.

Structural characteristics and spatial patterns of the technology transfer network in the Guangdong-Hong Kong-Macao Greater Bay Area

[J]. Sustainability, 2020, 12(6): 2204. doi: 10.3390/su12062204.

[本文引用: 1]

刘心怡.

粤港澳大湾区城市创新网络结构与分工研究

[J]. 地理科学, 2020, 40(6): 874-881.

DOI:10.13249/j.cnki.sgs.2020.06.002      [本文引用: 1]

在城市群创新网络视角下,采用粤港澳大湾区城市群创新相关数据,基于主成分分析法、地理引力模型与社会网络分析方法,研究了粤港澳大湾区创新水平及城市创新分工。研究结果表明,从创新分工来看,创新研发集中于珠三角9市,创新转化集中于香港和澳门。进一步分析创新研发合作情况,深圳以企业应用型创新为主,广州以基础创新为主,二者处于湾区创新网络的中心位置,带动了交互创新的4个城市子群,并在空间上形成创新分工三大片区。粤港澳大湾区已初步形成创新集群式发展格局,为湾区经济增长提供了有力支撑,成为中国经济高质量发展的重要空间载体。

[ Liu Xinyi.

Structure and division of urban innovation network in the Guangdong-Hong Kong-Macao Greater Bay Area

Scientia Geographica Sinica, 2020, 40(6): 874-881. ]

DOI:10.13249/j.cnki.sgs.2020.06.002      [本文引用: 1]

From the perspective of innovation network of urban agglomerations, using the relevant data of innovation of urban agglomerations in the Guangdong-Hong Kong-Macao Greater Bay Area, and based on the principal component analysis, geographical gravity model and social network analysis, this paper studies the innovation level and division of urban innovation in the Guangdong-Hong Kong-Macao Greater Bay Area. The results show that from the perspective of innovation division of labor, innovation research and development are concentrated in nine cities in the Pearl River Delta, and innovation transformation is concentrated in Hong Kong and Macao. Further analysis of innovation and R & D cooperation shows that Shenzhen focuses on enterprise application-oriented innovation, while Guangzhou focuses on basic innovation, and they are in the center of innovation network in the bay area, driving four urban subgroups of interactive innovation, and forming three areas of innovation division in space. The Guangdong-Hong Kong-Macao Greater Bay Area has initially formed an innovative cluster development pattern, which provides a strong support for the economic growth of the bay area and becomes an important space carrier for the high-quality development of China's economy.

刘奕涵, 石安杰, 李振威, .

粤港澳大湾区专利合作网络结构及链路预测: 以芯片领域为例

[J]. 中国市场, 2020(35): 32-35.

[本文引用: 1]

[ Liu Yihan, Shi Anjie, Li Zhenwei, et al.

Guangdong-Hong Kong-Macao Greater Bay patent cooperation network structure and link prediction: Taking the chip field as an example

China Market, 2020(35): 32-35. ]

[本文引用: 1]

Yang W Y, Fan F, Wang X L, et al.

Knowledge innovation network externalities in the Guangdong-Hong Kong-Macao Greater Bay Area: Borrowing size or agglomeration shadow?

[J]. Technology Analysis & Strategic Management, 2021. doi: 10.1080/09537325.2021.1940922.

[本文引用: 1]

游玎怡, 李芝兰.

粤港澳大湾区港深科技创新政策的现状与优化策略: 创新生态系统视角的分析

[J]. 华中师范大学学报(人文社会科学版), 2020, 59(4): 43-52.

[本文引用: 1]

[ You Dingyi, Li Zhilan.

The condition and strategy of innovation policy of Hong Kong and Shenzhen in the Greater Bay Area: A perspective from innovation ecosystem

Journal of Central China Normal University (Humanities and Social Sciences), 2020, 59(4): 43-52. ]

[本文引用: 1]

丁焕峰, 张育广.

粤港澳大湾区“双创”空间协同创新发展研究

[J]. 广东财经大学学报, 2020, 35(5): 80-88.

[本文引用: 1]

[ Ding Huanfeng, Zhang Yuguang.

The collaborative innovation of the mode of innovation and entrepreneurship in Guangdong-Hong Kong-Macao Greater Bay Area

Journal of Guangdong University of Finance & Economics, 2020, 35(5): 80-88. ]

[本文引用: 1]

陈昭, 梁淑贞.

粤港澳大湾区科技创新协同机制研究

[J]. 科技管理研究, 2021, 41(19): 86-96.

[本文引用: 1]

[ Chen Zhao, Liang Shuzhen.

Research on synergy mechanism of technology innovation in Guangdong-Hong Kong-Macao Greater Bay Area

Science and Technology Management Research, 2021, 41(19): 86-96. ]

[本文引用: 1]

李丹, 赵春哲, 蔡芷菁.

深港科技创新合作区生物科技合作对策研究

[J]. 经济研究导刊, 2021(29): 34-36.

[本文引用: 1]

[ Li Dan, Zhao Chunzhe, Cai Zhijing.

Research on countermeasures of biotechnology cooperation in Shenzhen-Hong Kong science and technology innovation cooperation zone

Economic Research Guide, 2021(29): 34-36. ]

[本文引用: 1]

胡际豪, 吴浩存, 姚玲洁.

粤港澳大湾区区域创新系统与经济增长仿真研究

[J]. 统计与决策, 2020, 36(24): 98-102.

[本文引用: 1]

[ Hu Jihao, Wu Haocun, Yao Lingjie.

Simulation research on regional innovation system and economic growth in Guangdong-Hong Kong-Macao Greater Bay Area

Statistics & Decision, 2020, 36(24): 98-102. ]

[本文引用: 1]

张玉臣, 朱铭祺, 廖凯诚.

粤港澳大湾区创新生态系统内部耦合时空演化及空间收敛分析

[J]. 科技进步与对策, 2021, 38(24): 38-47.

[本文引用: 1]

[ Zhang Yuchen, Zhu Mingqi, Liao Kaicheng.

Space-time transition and convergence trend research on internal coupling coordination of innovation ecosystem in the Guangdong-Hong Kong-Macao Greater Bay Area

Science & Technology Progress and Policy, 2021, 38(24): 38-47. ]

[本文引用: 1]

郑国楠.

粤港澳大湾区创新链协同: 机理、评价与对策建议

[J]. 区域经济评论, 2021(6): 85-92.

[本文引用: 1]

[ Zheng Guo-nan.

The innovation chain collaboration of Guangdong-Hong Kong-Macao Greater Bay Area: Mechanism, evaluation and countermeasures

Regional Economic Review, 2021(6): 85-92. ]

[本文引用: 1]

齐宏纲, 戚伟, 刘盛和.

粤港澳大湾区人才集聚的演化格局及影响因素

[J]. 地理研究, 2020, 39(9): 2000-2014.

DOI:10.11821/dlyj020200575      [本文引用: 1]

知识经济时代人才是建设粤港澳大湾区世界级城市群的重要生产要素。本研究采用2005年、2010年和2015年广东省人口普查和1%抽样调查数据,以及香港和澳门对应口径的统计数据,以县市为基本单元,提出从受教育程度和职业技能两个口径测度人才集聚水平,系统解析粤港大湾区高学历与高技能人才集聚的演化格局及影响因素。结果表明:① 粤港澳大湾区作为中国经济高度发达地区,人才集聚优势高度集中在香港、澳门,内地珠三角城市群的人才集聚水平低于京津冀城市群和长三角城市群。② 2005—2015年,粤港澳大湾区高学历人才集聚持续均衡化,而高技能人才集聚优势仍然体现在香港、澳门,内地因为发展教育提升的高学历人力资本尚未完全有效转化为高技能人力资本。③ 香港人才集聚水平处于绝对领先,澳门、广州、珠海和深圳次之,而外围县市相对处于人才洼地,特别是制造业发达的佛山、东莞人才集聚水平相对偏低。④ 面板模型表明,服务业对高技能人才集聚的拉动效应强于高学历人才,而制造业的拉动作用并不突出。高等教育对高技能人才集聚的带动作用要弱于高学历人才。高薪资待遇有利于促进高学历人才集聚,但对高技能人才集聚的促进作用有限。新时期,亟需推动粤港澳三地管理制度衔接、产业转型升级和优质高等教育建设,推动粤港澳大湾区建设国际创新中心。

[ Qi Honggang, Qi Wei, Liu Shenghe.

Talents concentration in the Guangdong-Hong Kong-Macao Greater Bay Area, China: Evolution pattern and driving factors

Geographical Research, 2020, 39(9): 2000-2014. ]

DOI:10.11821/dlyj020200575      [本文引用: 1]

In the era of knowledge economy, talents concentration plays a key role in the development of a world-class urban agglomeration of Guangdong-Hong Kong-Macao Greater Bay Area (GHM). Based on the population census of Guangdong Province in 2010, the 1% population sampling survey in 2005 and 2015, and employment statistics in Hong Kong and Macao, this study measures the level of talents concentration from two perspectives of educational attainment and occupation on the county scale, and analyzes the evolution pattern and motivations of talents concentration in the GHM. The results show that: (1) GHM is one of the highly developed economic areas in China, and there is the absolute advantage of talents concentration in Hong Kong and Macao, while the level of talents concentration in the Pearl River Delta urban agglomeration is lower than that in the Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations. (2) From 2005 to 2015, the spatial distribution of highly-educated talents in the GHM tends to be balanced, and there is also the advantage of the concentration of highly-skilled talents in Hong Kong and Macao. The increasing human capital defined by educational attainment in the mainland, which is caused by the expansion of college enrollment in China, has not been fully and effectively transformed into the advantage of human capital defined by occupation. (3) The level of talents concentration in Hong Kong plays an absolute leading role, followed by Macao, Guangzhou, Zhuhai and Shenzhen, while the counties and cities on the periphery of GHM have a low level of talents concentration. In particular, although Foshan and Dongguan have some developed manufacturing industries, their talents concentration level is relatively low. (4) The panel model shows that the service industry has a greater promoting impact on the concentration of highly-skilled workers than that of highly-educated labors, and manufacturing industry does not influence the talents concentration. Higher education plays a less important role in promoting the agglomeration of highly-skilled workers than that of highly-educated labors. High salary helps promote the concentration of highly-educated workers, while it does not boost the concentration of highly-skilled labors. In the new era, it is urgent to promote the cohesion of management systems in Guangdong, Hong Kong and Macao, the industrial transformation and upgrading, and the establishment of high-quality higher education, ultimately, building GHM into an international innovation center.

周振江, 苏瑞波, 段艳红, .

粤港澳大湾区科技人才流动的现状及影响因素研究

[J]. 城市观察, 2020(3): 7-19.

[本文引用: 1]

[ Zhou Zhenjiang, Su Ruibo, Duan Yanhong, et al.

Research on the current situation and influencing factors of the flow of scientific and technological talents in Guangdong-Hong Kong-Macao Greater Bay Area

Urban Insight, 2020(3): 7-19. ]

[本文引用: 1]

王迎军, 曾志敏, 张龙鹏, .

中长期视角下粤港澳大湾区的全球创新与产业高地战略规划研究

[J]. 中国工程科学, 2021, 23(6): 108-119.

[本文引用: 1]

[ Wang Yingjun, Zeng Zhi-min, Zhang Longpeng, et al.

Strategic planning of global innovation and industry highland in Guangdong-Hong Kong-Macao Greater Bay Area from a medium- and long-term perspective

Strategic Study of Chinese Academy of Engineering, 2021, 23(6): 108-119. ]

[本文引用: 1]

Fernandes C, Farinha L, Ferreira J J, et al.

Regional innovation systems: What can we learn from 25 years of scientific achievements?

[J]. Regional Studies, 2021, 55(3): 377-389.

DOI:10.1080/00343404.2020.1782878      URL     [本文引用: 1]

Xu H Y, Hsu W L, Meen T H, et al.

Can higher education, economic growth and innovation ability improve each other?

[J]. Sustainability, 2020, 12(6): 2515. doi: 10.3390/su12062515.

URL     [本文引用: 1]

Yang F, Sun Y, Zhang Y, et al.

Factors affecting the manufacturing industry transformation and upgrading: A case study of Guangdong-Hong Kong-Macao Greater Bay Area

[J]. International Journal of Environmental Research and Public Health, 2021, 18(13): 7157. doi: 10.3390/ijerph18137157.

URL     [本文引用: 1]

曹靖, 张文忠.

不同时期城市创新投入对绿色经济效率的影响: 以粤港澳大湾区为例

[J]. 地理研究, 2020, 39(9): 1987-1999.

DOI:10.11821/dlyj020200439      [本文引用: 1]

本文以粤港澳大湾区各城市作为案例,对2000—2017年各城市创新投入强度及绿色经济效率进行了测度,并探讨了不同时期城市创新投入对提升绿色经济效率影响方式和大小的变化。本文主要得出了以下结论:① 大湾区绝大多城市在2000—2017年期间创新投入强度都实现了显著提升,在此期间深圳城市创新投入强度始终处于领先地位,广州、香港创新投入强度增长较慢。② 2000年—2017年间大湾区各城市绿色经济效率的变化情况存在较大差异,处于稳定发展阶段的城市绿色经济效率通常稳步提升,而处于高速增长阶段的城市绿色经济效率多出现波动。③ 从2000年—2017年,大湾区城市绿色经济效率的主要影响因素由规模效应逐渐过渡到创新效应,创新投入强度提升对于提升城市绿色经济效率的贡献度明显上升;④ 创新效应会随着城市发展成熟、产业规模的增大,对提升城市绿色经济效率起到的作用不断增强,应将提升创新投入作为提升城市绿色经济效率最重要的手段。

[ Cao Jing, Zhang Wenzhong.

The influence of urban innovation input on green economy efficiency in different periods: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area

Geographical Research, 2020, 39(9): 1987-1999. ]

DOI:10.11821/dlyj020200439      [本文引用: 1]

China's economy has achieved rapid development since the reform and opening up in 1978, but large amounts of resource consumption and pollutant emissions have significantly affected the ecological environment of some regions, therefore attention has been paid to the concept of green development and innovative development. Technological progress and innovation investment is an important way to improve the level of green development. The Guangdong-Hong Kong-Macao Greater Bay Area is a good case study area for examining the contribution of innovation investment to improving green development level in different periods, as this area, one of the regions with the highest degree of openness and the strongest economic vitality in China, has experienced a rapid developing process driven by labor-intensive industries and high-energy consumption industries, and has started the transformation to green development. Taking the cities in the Greater Bay Area as examples, this paper measures the intensity of innovation input and the efficiency of green economy in each city from 2000 to 2017, and discusses the changes in the ways and sizes of the impact of urban innovation input on improving the efficiency of green economy in different periods. This paper mainly comes to the following conclusions. (1) Most cities in the Greater Bay Area have achieved significant improvement in innovation input intensity from 2000 to 2017. During this period, Shenzhen was in the leading position in innovation input intensity, while Guangzhou and Hong Kong had slow growth in innovation input. (2) From 2000 to 2017, there was a big difference in the change of the efficiency of green economy among cities in the Greater Bay Area. The efficiency of green economy in cities in the stage of stable development usually increased steadily, while that in cities in the stage of rapid growth often fluctuated. (3) From 2000 to 2017, the main influencing factors of urban green economy efficiency in the Greater Bay Area gradually transitioned from scale effect to innovation effect, and the contribution of innovation input intensity to the improvement of urban green economy efficiency increased significantly. (4) With the maturity of urban development and the increase of industrial scale, the innovation effect will play a more important role in improving the efficiency of urban green economy.

周四清, 庞程.

产业集聚及协调发展对区域科技创新水平的影响: 基于粤港澳大湾区制造业、金融业、教育的实证研究

[J]. 科技管理研究, 2019, 39(19): 104-114.

[本文引用: 1]

[ Zhou Siqing, Pang Cheng.

Impact of industrial agglomeration and coordinated development on regional technological innovation: An empirical study based on Guangdong-Hong Kong-Macao Greater Bay Area's manufacturing industry, financial industry and education

Science and Technology Management Research, 2019, 39(19): 104-114. ]

[本文引用: 1]

王洋, 张虹鸥, 吴康敏.

粤港澳大湾区住房租金的空间差异与影响因素

[J]. 地理研究, 2020, 39(9): 2081-2094.

DOI:10.11821/dlyj020200272      [本文引用: 1]

以粤港澳大湾区58个县区单元的住房平均租金为基本数据,通过“住房租金等级金字塔”构建、租金空间格局展示、空间自相关分析、跨境租金差距对比、售租比研究等方法总结粤港澳大湾区住房租金的空间差异格局与特征。从“租赁需求+城市基本面”的理论视角构建由新增人口、人均住房面积、收入水平、经济水平、产业结构、学历结构组成的租金差异影响因素模型。通过模型对比,采用空间滞后模型测度粤港澳大湾区住房租金的主要影响因素,并基于地理探测器分析其因素的影响强度差异。结果表明,粤港澳大湾区住房租金总体呈现以港澳与珠三角九市之间的境内外差异为主、以广深核心区与其他区域差异为辅的双层次差异格局。跨境租金差异程度最高,广州、深圳、珠海的“售租比”较高;收入水平、经济水平、人均住房面积和产业结构对粤港澳大湾区的住房租金差异有显著影响,其中,收入水平的影响强度最高。

[ Wang Yang, Zhang Hong'ou, Wu Kangmin.

Spatial differentiation and influencing factors of housing rents in the Guangdong-Hong Kong-Macao Greater Bay Area

Geographical Research, 2020, 39(9): 2081-2094. ]

DOI:10.11821/dlyj020200272      [本文引用: 1]

"Livability" is at the core of building a high-quality living circle in the Guangdong-Hong Kong-Macao Greater Bay Area (GHMGBA), and the excessive housing burden costs have become an important obstacle to livability. The differentiation of the rental market is an indispensable and important part of the housing market in the GHMGBA and is inseparable from the creation of a livable life circle. Based on the average housing rent of 58 counties in the GHMGBA, this study summarizes the patterns and characteristics of the spatial differences in housing rents through the construction of a “grading pyramid of housing rents”, and displays the spatial pattern of housing rents through spatial autocorrelation analysis, cross-border rent gap comparison, and price-to-rent ratio analysis. From the theoretical perspective of leasing demand and urban fundamentals, this study constructs a model of factors influencing rent differences, consisting of population growth, per capita housing area, income level, economic level, industrial structure, and education structure. Through model comparison, a spatial lag model was used to measure the main factors influencing the housing rents in the GHMGBA. Based on the geographical detector, the study further analyzed the differences in the intensity of the factors' influence. The results showed that the housing rents in the GHMGBA generally presented a two-level difference pattern. The pattern was dominated by domestic and foreign differences between Hong Kong, Macao, and nine cities in the Pearl River Delta, as well as the differences between the core areas of Guangzhou, Shenzhen, and other regions. The cross-border rent difference was the highest. Higher price-to-rent ratios were observed in Guangzhou, Shenzhen, and Zhuhai. Income level, economic level, per capita housing area, and industrial structure had a significant impact on housing rent differences in the GHMGBA. Among them, income level had the highest impact intensity. This study responds to cross-border regional differences within the country from the perspective of housing rent. Cross-border differences are not only reflected in the population′s economic, income, and institutional levels, but also in the housing rent. The key issue for the regional linkage development of the housing market in the GHMGBA and the construction of a livable and quality living area is the coordinated development across borders.

王洋, 杨忍, 李强, .

广州市银行业的空间布局特征与模式

[J]. 地理科学, 2016, 36(5): 742-750.

DOI:10.13249/j.cnki.sgs.2016.05.012      [本文引用: 1]

以广州都市区2013年全部类别银行的1 637个银行网点为基本数据,利用平均最邻近距离、核密度函数、缓冲区分析、空间模式提炼等方法探索广州市银行业的空间布局特征及其类别差异,总结其空间分异模式。结果表明:① 广州市银行业空间不均衡性布局显著,并呈现中心集聚特征;② 不同类型银行的分布特征差异显著。国有商业银行的服务便利性和数量等级高,网点密度大,构成了广州市银行业的主体;③ 广州市银行业布局总体呈现由中心向外围逐渐递减的&#x0201c;圈层+扇形&#x0201d;空间模式。其中,核心商圈是银行业高度集聚区,中心城区密度递减最为显著,近郊区密度最低;④ 不同类型银行的空间密度模式差异显著。国有商业银行、全国性股份制银行和城市商业银行分别呈现由中心到外围非均匀递减的倒&#x0201c;S&#x0201d;型、&#x0201c;L&#x0201d;型和&#x0201c;阶梯型&#x0201d;曲线模式。外资港资银行呈现为核心商圈集聚模式。农村商业银行为均质的&#x0201c;一&#x0201d;字型直线模式。

[ Wang Yang, Yang Ren, Li Qiang, et al.

The spatial layout features and patterns of banking industry in Guangzhou city, China

Scientia Geographica Sinica, 2016, 36(5): 742-750. ]

DOI:10.13249/j.cnki.sgs.2016.05.012      [本文引用: 1]

In this article, based on the average nearest neighbor method, kernel density function, buffer analysis and spatial pattern extraction method, we explore the characteristics of spatial layout and class differences of the banking industry in Guangzhou City and summarize its spatial differentiation model. All of the data are from 1 637 banking outlets distributed in Guangzhou metropolitan areas. The results are shown as follows: 1) The spatial layout of Guangzhou banking shows a significant imbalance and center cluster characteristic. 2) Significant difference is found in distribution characteristics of different types of banks. State-owned commercial bank constitutes the main body of the banking sector in Guangzhou for its convenient service, enormous quantity, high dot density and high grade. 3) The quantity of bank outlets has diminished gradually from the city center to the periphery and shows a ‘circle layer + fan shaped’ space model: the core commercial circle is banking highly concentrated area, the city center is the most significant regional banking density decrease area and the least number of bank is located in the suburb. 4) Different types of banks have different spatial density model. The spatial density of state-owned commercial banks, national joint-stock banks and city commercial banks present non-uniform decline from center to the periphery, and respectively show inverted ‘S’ type, ‘L’ type and ‘ladder’ type curve model. Foreign funded banks and Hong Kong funded banks present a core business agglomeration mode, while the rural commercial bank presents a homogeneous linear model.

Clark P J, Evans F C.

Distance to nearest neighbor as a measure of spatial relationships in populations

[J]. Ecology, 1954, 35(4): 445-453.

DOI:10.2307/1931034      URL     [本文引用: 1]

田光进, 沙默泉.

基于点状数据与 GIS 的广州大都市区产业空间格局

[J]. 地理科学进展, 2010, 29(4): 387-395.

DOI:10.11820/dlkxjz.2010.04.001      [本文引用: 1]

利用2004年数字城市数据,研究了广州大都市区产业内部、产业之间的空间关系,比较了广州大都市区中心城区和新城区各种产业的空间格局.将广州大都市区行业分为制造业、批发和运输、零售、生产服务业、房地产业、管理服务、教育、医疗保健及社会扶助和娱乐设施等10类.利用1 km<sup>2</sup>格网画出了各行业点状密度,并通过分区产业百分比及区位商分析了各产业企业的空间分布,中心城区的主导产业是管理服务、房地产、零售及金融保险等服务行业,而在新城区其主导功能是制造业、批发与运输及生产服务业等.利用平均最邻近距离分析广州大都市区中心城区和新城区各产业内企业之间的空间关系,广州大都市区各产业企业都呈凝聚分布,在中心城区金融行业分布最集中,其次是房地产、生产服务业、娱乐、管理服务等.利用邻近性指数分析了各产业之间的空间关系,发现生产服务业和管理服务业、教育和医疗保健与社会扶助、娱乐和零售等邻近性较大.

[ Tian Guangjin, Sha Moquan.

The spatial pattern of Guangzhou metropolitan area industry based on point data and GIS.

Progress in Geography, 2010, 29(4): 387-395. ]

DOI:10.11820/dlkxjz.2010.04.001      [本文引用: 1]

This paper studies the spatial pattern of intra-sectoral and inter-sectoral industries in Guangzhou metropolitan area using the digital city data of 2004. The industries of Guangzhou metropolitan area are classified as manufacture, wholesale and transportation, retail, producer service, real estate, administration service, education, health care and social assitance, entertainment and accommodation. The cartographic map of 1km2, percentage and location quotient are applied to study spatial distribution of establishments. In the central urban areas, administration service, real estate, retail, finance and insurance are the major industries while manufacture, wholesale and transportation and producer service are the major industries in the new cities. Average nearest neighbor distance (R) is used to study the intrasectoral spatial pattern. The establishments of Guangzhou are cluster distributed and finance and insurance are concentrated in central urban areas. Proximity index (PI) is used to study intersectoral pattern. The proximity of entertainment and accommodation and retail, education and health care and social assistance, producer service and administration service are more obvious.

Wang J F, Li X H, Christakos G, et al.

Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China

[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127.

DOI:10.1080/13658810802443457      URL     [本文引用: 1]

王劲峰, 徐成东.

地理探测器: 原理与展望

[J]. 地理学报, 2017, 72(1): 116-134.

DOI:10.11821/dlxb201701010      [本文引用: 3]

空间分异是自然和社会经济过程的空间表现,也是自亚里士多德以来人类认识自然的重要途径。地理探测器是探测空间分异性,以及揭示其背后驱动因子的一种新的统计学方法,此方法无线性假设,具有优雅的形式和明确的物理含义。基本思想是:假设研究区分为若干子区域,如果子区域的方差之和小于区域总方差,则存在空间分异性;如果两变量的空间分布趋于一致,则两者存在统计关联性。地理探测器q统计量,可用以度量空间分异性、探测解释因子、分析变量之间交互关系,已经在自然和社会科学多领域应用。本文阐述地理探测器的原理,并对其特点及应用进行了归纳总结,以利于读者方便灵活地使用地理探测器来认识、挖掘和利用空间分异性。

[ Wang Jinfeng, Xu Chengdong.

Geodetector: Principle and prospective

Acta Geographica Sinica, 2017, 72(1): 116-134. ]

DOI:10.11821/dlxb201701010      [本文引用: 3]

Spatial stratified heterogeneity is the spatial expression of natural and socio-economic process, which is an important approach for human to recognize nature since Aristotle. Geodetector is a new statistical method to detect spatial stratified heterogeneity and reveal the driving factors behind it. This method with no linear hypothesis has elegant form and definite physical meaning. Here is the basic idea behind Geodetector: assuming that the study area is divided into several subareas. The study area is characterized by spatial stratified heterogeneity if the sum of the variance of subareas is less than the regional total variance; and if the spatial distribution of the two variables tends to be consistent, there is statistical correlation between them. Q-statistic in Geodetector has already been applied in many fields of natural and social sciences which can be used to measure spatial stratified heterogeneity, detect explanatory factors and analyze the interactive relationship between variables. In this paper, the authors will illustrate the principle of Geodetector and summarize the characteristics and applications in order to facilitate the using of Geodetector and help readers to recognize, mine and utilize spatial stratified heterogeneity.

Wang J F, Zhang T L, Fu B J.

A measure of spatial stratified heterogeneity

[J]. Ecological Indicators, 2016, 67: 250-256.

DOI:10.1016/j.ecolind.2016.02.052      URL     [本文引用: 1]

王淑英, 寇晶晶, 卫朝蓉.

创新要素集聚对经济高质量发展的影响研究: 空间视角下金融发展的调节作用

[J]. 科技管理研究, 2021, 41(7): 23-30.

[本文引用: 1]

[ Wang Shuying, Kou Jingjing, Wei Zhaorong.

Research on influence of innovation factor agglomeration on high-quality economic development: The moderating effect of financial development the spatial perspective

Science and Technology Management Research, 2021, 41(7): 23-30. ]

[本文引用: 1]

Law S H, Sarmidi T, Goh L T.

Impact of innovation on economic growth: Evidence from Malaysia

[J]. Malaysian Journal of Economic Studies, 2020, 57: 113-132.

DOI:10.22452/MJES.vol57no1.6      URL     [本文引用: 1]

陈怡, 刘芸芸.

技术创新对收入分配的影响: 基于不同收入人群的分析

[J]. 南京财经大学学报, 2019(2): 69-79, 98.

[本文引用: 1]

[ Chen Yi, Liu Yunyun.

The impact of technological innovation on income distribution: An analysis based on different income groups

Journal of Nanjing University of Finance and Economics, 2019(2): 69-79, 98. ]

[本文引用: 1]

Wu K M, Wang Y, Zhang H O, et al.

On innovation capitalization: Empirical evidence from Guangzhou, China

[J]. Habitat International, 2021, 109: 102323. doi: 10.1016/j.habitatint.2021.102323.

URL     [本文引用: 3]

芮雪琴, 李环耐, 牛冲槐, .

科技人才聚集与区域创新能力互动关系实证研究: 基于2001—2010年省际面板数据

[J]. 科技进步与对策, 2014, 31(6): 23-28.

[本文引用: 1]

[ Rui Xueqin, Li Huannai, Niu Chonghuai, et al.

Interactive relationship of scientific talent accumulation and regional scientific innovation ability

Science & Technology Progress and Policy, 2014, 31(6): 23-28. ]

[本文引用: 1]

孙瑜康, 李国平, 袁薇薇, .

创新活动空间集聚及其影响机制研究评述与展望

[J]. 人文地理, 2017, 32(5): 17-24.

[本文引用: 1]

[ Sun Yukang, Li Guoping, Yuan Weiwei, et al.

The spatial concentration of innovation and its mechanisms: A literature review and prospect

Human Geography, 2017, 32(5): 17-24. ]

[本文引用: 1]

张颖莉.

粤港澳大湾区人才集聚与空间分布格局研究

[J]. 探求, 2020(4): 69-78.

[本文引用: 2]

[ Zhang Yingli.

Research on the talent concentration and space distribution pattern of Guangdong-Hong Kong-Macao Greater Bay Area

Academic Search for Truth and Reality, 2020(4): 69-78. ]

[本文引用: 2]

吴康敏, 叶玉瑶, 张虹鸥, .

粤港澳大湾区战略性产业技术创新的地理格局及其多样性特征

[J]. 热带地理, 2022, 42(2): 183-194.

DOI:10.13284/j.cnki.rddl.003438      [本文引用: 1]

以粤港澳大湾区点尺度的发明专利空间数据为基础,通过建立战略性产业与专利IPC分类号之间的联系,提取了大湾区6类主要行业的发明专利,利用核密度分析、标准差尾值检验、熵值法和平均最邻近距离分析等方法,识别粤港澳大湾区多类型技术创新的空间分布特征与差异。结果表明:粤港澳大湾区技术创新的地理格局呈现显著的空间不均衡性,区域尺度形成了广州与深圳2个集聚核心,珠江东西两岸在创新能力上存在较大差距,技术多样性的区位主要分布在大湾区核心城市的核心区;新一代电子信息、先进材料、绿色石化3类产业的创新占大湾区整体的51.67%,不同技术类型的创新在空间上呈现显著分异,主要集中在广州、深圳、东莞、珠海的核心区,其中,新一代电子信息产业创新的空间集聚度最高。

[ Wu Kangmin, Ye Yuyao, Zhang Hong'ou, et al.

The geographical pattern and diversity of strategic industry technological innovation in the Guangdong-Hong Kong-Macao Greater Bay Area

Tropical Geography, 2022, 42(2): 183-194. ]

DOI:10.13284/j.cnki.rddl.003438      [本文引用: 1]

The dynamics of innovation in geographical space is closely related to the regional development trajectory. Evolutionary economic geography points out the path dependence characteristics of regional development, and emphasizes that the direction of regional development is rooted in the original industrial and technological structure characteristics. Therefore, the geographical pattern of technological innovation and the identification of its diversity characteristics are of significance to the realization of regional innovation and the evolution of industrial structure. From the perspective of strategic industry, this paper aims to reveal the geographical pattern and diversity characteristics of technological innovation in strategic industry in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). Based on the point scale spatial data of invention patents in the GBA and by means of connecting strategic industry with national economy industry classification code and patent IPC classification code, the invention patents of six major industries in the GBA are extracted, which are the new generation of electronic information industry, automobile industry, green petrochemical industry, new energy industry, advanced material industry and intelligent robot industry. And the nuclear density analysis, standard deviation tail value test, entropy method and average nearest neighbor distance analysis are used to identify the spatial distribution characteristics and differences of multiple types of technological innovation in the GBA. The results show that the geographic pattern of technological innovation in the GBA presents a significant spatial imbalance. At the regional scale, Guangzhou and Shenzhen are the two agglomeration cores. There is a large gap in the innovation ability between the east and west sides of the Pearl River. The accumulation of technological innovation on the east bank is much higher than that on the west bank. The innovation profile line on the east bank has formed two obvious peaks in Guangzhou and Shenzhen. The high value of the innovation profile line on the west bank is mainly concentrated in Guangzhou and Zhuhai, and the peak value is far lower than that on the east bank. The location of technological diversity is mainly distributed in the core areas of the GBA, mainly including Yuexiu District and Tianhe District in Guangzhou, Nanshan District and Futian District in Shenzhen, Binhai District in Dongguan and Xiangzhou District in Zhuhai. And the distribution characteristics of technological innovation data of different industrial types are different. The innovation of the new generation of electronic information industry, advanced materials industry and green petrochemical industry accounts for 51.67% of the total innovation in the GBA. The innovation of different technological types shows obvious spatial differentiation. The innovation agglomeration degree of the new generation electronic information industry is the highest, with the R value of 0.0576. And its observed value of the average nearest neighbor distance between invention patents is 32.03 m, which belongs to the minimum value in the selected analysis industries, showing strong agglomeration characteristics. There are differences in the distribution characteristics of the agglomeration core of the six major industries in the GBA. The common ground is that they have formed the largest two agglomeration cores in the core areas of Guangzhou and Shenzhen, covering Yuexiu-Tianhe area in Guangzhou and Futian-Nanshan-Luohu area in Shenzhen. And the spatial distribution is mainly concentrated in the core areas of Guangzhou, Shenzhen, Dongguan and Zhuhai. Among them, the spatial agglomeration degree of the new generation of electronic information industry innovation is the highest. Agglomeration and multi-dimensional proximity, diversity and path dependence are the main mechanisms for the formation of the geographical pattern of technological innovation in the GBA, and these two key mechanisms promote the formation of current multi-type technological innovation space in the GBA.

李郇, 周金苗, 黄耀福, .

从巨型城市区域视角审视粤港澳大湾区空间结构

[J]. 地理科学进展, 2018, 37(12): 1609-1622.

DOI:10.18306/dlkxjz.2018.12.003      [本文引用: 1]

粤港澳大湾区是全球高度城市化地区之一。本文引介巨型城市区域理论来审视粤港澳大湾区的空间结构发展,从边界、功能、核心区、区域基础设施4个维度进行分析。未来粤港澳大湾区将呈现四大发展趋势:一是去边界化趋势显著,大湾区内部边界地区将快速发展;二是产业区将成为网络化的功能区块,并取代城市成为地区参与全球竞争的基本单元;三是广佛、港深两大核心区将形成;四是轨道公交化趋势,大湾区共享交通枢纽与公服设施。按发展趋势预测,未来粤港澳大湾区空间结构将形成&#x0201c;两核+若干功能区&#x0201d;的新格局。

[ Li Xun, Zhou Jinmiao, Huang Yaofu, et al.

Understanding the Guangdong-Hong Kong-Macao Greater Bay Area from the perspective of mega-city region

Progress in Geography, 2018, 37(12): 1609-1622. ]

DOI:10.18306/dlkxjz.2018.12.003      [本文引用: 1]

The Guangdong-Hong Kong-Macao Greater Bay Area is one of the most urbanized city regions in the world. This study aimed to understand the development of the Guangdong-Hong Kong-Macao Greater Bay Area by applying the theoretical framework of mega-city region. We regarded the Guangdong-Hong Kong-Macao Greater Bay Area as a mega-city region and analyzed its spatial structure from four dimensions: intraregional boundaries, functional network, core area, and regional infrastructure integration. Four development trends were identified: (1) Boundary effect is reducing remarkably and border areas will grow rapidly inside the Greater Bay Area. (2) Industrial clusters become functional areas in a functional network, replacing cities to be the basic unit in global competition. (3) Two core areas can be identified, including the Guangzhou-Foshan core area and the Hong Kong-Shenzhen core area. (4) Rail transit station density tends to increase and a global transportation hub is emerging, which make it convenient for people in the Greater Bay Area to share transportation hub and public service facilities. In the end, the article presents a vision of spatial structure for the Guangdong-Hong Kong-Macao Greater Bay Area, concluding that this mega-city region will form a new structure of 'two cores and functional areas.'

吴炫, 杨家文.

流动量与关注度视角下的城市网络结构: 以广州、深圳为例

[J]. 地理科学进展, 2019, 38(12): 1843-1853.

DOI:10.18306/dlkxjz.2019.12.002      [本文引用: 1]

在城市与区域转型发展的背景下,城市网络经历着剧烈的重构,广州和深圳是推动粤港澳大湾区一体化的主导力量,明晰其在网络中的发展定位与动态联系,对于引领区域协调发展具有重要的战略意义。然而,现有城市网络研究较缺乏对多尺度差异与实虚映射关系的关注,因此论文基于微博数据,从流动量、关注度出发,运用社会网络分析,探究了广深在粤港澳大湾区、全国、全球网络中的节点地位与联系特征。结果表明:① 多尺度网络下,广深不同的联系导向塑造了差异化的要素组织能力,广州辐射范围较广、联系相对均衡,深圳联系相对集中、与香港联系尤为紧密;② 实虚网络之间,广深的对外联系存在协同补充、路径依赖效应,且在各尺度下具有不同程度的体现,多重效应的叠加交融推动着区域联系趋向柔性化;③ 基于上述网络格局,广深应立足于不同的联系模式与发展实际,分别发挥区域交通枢纽及创新制度高地的优势,引领打造有序高效的区域网络系统。

[ Wu Xuan, Yang Jiawen.

City network by mobility and attention indices: A comparison of Guangzhou and Shenzhen

Progress in Geography, 2019, 38(12): 1843-1853. ]

DOI:10.18306/dlkxjz.2019.12.002      [本文引用: 1]

City networks have experienced rapid reconstruction in the past decades due to the development of city-regions. In the Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou and Shenzhen are two pivotal cities. They play key roles in promoting regional development. Therefore, it is of great significance to identify their influence areas, which can inform urban management and regional planning. Meanwhile, increasing availability of social media data creates opportunities for relevant research. The pervasive presence of location-based services and the associated content make it possible for researchers to gain an unprecedented access to the direct records of human activities and perceptions. Much of existing literature, however, pays little attention to the differences in multi-scale network or to the relationship between the real-world network and virtual network, which are both presented in datasets of this kind. Our research contributes to the literature in both the methodological and the empirical aspects. First, we investigated the node and link characteristics of the influence areas of Guangzhou and Shenzhen by computing social network indicators with a dataset of almost 10 million Sina Microblog records between January 1 and February 6, 2018. Indices of mobility and attention were computed based on characteristics such as consecutive locations, degree centrality, closeness centrality, and average radius of gyration. These indices help to catch the interaction between real and virtual networks. Second, in order to understand inter-city mobility and attention characteristics of Guangzhou and Shenzhen, we mapped city networks of multi-scale, where edge weights denote interaction strengths. Third, our analysis confirmed that the Sina Microblog data exhibit similar statistical properties as other city network datasets. Based on the result of analyses, we argue that Guangzhou had more balanced influence in various directions, representing efficiency in hinterland connection and resource integration. Shenzhen's area of influence was relatively concentrated, with a strong tie with neighboring Hong Kong. Overall, Guangzhou competes better in the mobility network while Shenzhen competes better in the attention network. A complementary relationship was also identified between those two networks. In conclusion, we propose that Guangzhou and Shenzhen took advantage of their respective role as the hubs of regional transportation and innovation as well as what they have already accumulated and their connections with other parts of the world. They should help to build a coordinated and competitive Guangdong-Hong Kong-Macao Greater Bay Area. Our research results offer some insights for policymakers to interpret the geographic dynamics and make relevant decisions in this region. It also provides some references and inputs for analyzing social media data for the research community.

Zhang F Z, Wu F L.

Rethinking the city and innovation: A political economic view from China's biotech

[J]. Cities, 2019, 85, 150-155.

[本文引用: 1]

Storper M, Venables A J.

Buzz: Face-to-face contact and the urban economy

[J]. Journal of Economic Geography, 2004, 4(4): 351-370.

DOI:10.1093/jnlecg/lbh027      URL     [本文引用: 1]

/