面向昼夜过程的黄土高原夏季降水时空变化特征
李双双(1988— ),男,陕西潼关人,副教授,硕士生导师,研究方向为气候变化与区域灾害防治。E-mail: lss1988@snnu.edu.cn |
收稿日期: 2024-04-16
修回日期: 2024-07-09
网络出版日期: 2025-01-15
基金资助
国家自然科学基金项目(U2243231)
国家自然科学基金项目(41701592)
Spatiotemporal variation of the summer diurnal composite precipitation on the Loess Plateau
Received date: 2024-04-16
Revised date: 2024-07-09
Online published: 2025-01-15
Supported by
National Natural Science Foundation of China(U2243231)
National Natural Science Foundation of China(41701592)
全球变暖背景下,北半球夏季陆地昼夜复合高温频发,天尺度连续性降水减少,短历时、强降水致灾强度增加,昼夜降水组合关系正在改变。与年代、季节尺度相比,黄土高原夏季昼夜尺度降水时空变化规律尚不明晰。论文基于1970—2020年逐日降水数据,辅以经验正交分解、趋势分析等气候诊断方法,对黄土高原夏季(6—8月)4种昼夜降水类型(昼晴夜雨、昼伏夜雨、昼夜连雨和昼雨夜晴)降水量、天数和强度时空变化特征进行分析。结果表明:① 2000—2020年,黄土高原夏季和夜雨雨量显著增加,并未改变夏季和夜雨“东南多、西北少”的空间分布格局;② 受降水量波动与降水日数下降的影响,黄土高原昼晴夜雨、昼夜连雨、昼雨夜晴的降雨强度呈现显著增加趋势,而昼伏夜雨降雨强度在20世纪90年代后维持稳定;③ 宁夏中部干旱带、河套平原东部、山西北部、汾渭平原—伊洛河平原,是昼晴夜雨变化的敏感区;昼伏夜雨变化敏感区为:土石山区、黄土高原西南高海拔地区。黄土高原东南部河谷平原区,是昼夜连雨、昼雨夜晴变化的敏感区。研究结果启示:夏季白天和昼夜连雨降水强度增加,正在改变黄土高原昼夜极端降水态势,未来需要加强夏季昼夜极端降水变化机理研究,为构建区域综合风险防范体系提供理论基础。
李双双 , 胡佳岚 , 段生勇 . 面向昼夜过程的黄土高原夏季降水时空变化特征[J]. 地理科学进展, 2025 , 44(1) : 170 -184 . DOI: 10.18306/dlkxjz.2025.01.013
In the context of global warming, there is a higher probability of occurrence of the summertime compound hot extremes when daytime and nighttime heat sustains, which lead to the reduction of continuous precipitation and increase of precipitation with short duration and high intensity, resulting in changes of diurnal precipitation pattern at summertime in the Northern Hemisphere land area. Compared with the well-understood summer precipitation on the annual scale, current knowledge about combined daytime and nighttime precipitation remains too scarce for the Loess Plateau of China. Based on the daily precipitation and maximum temperature dataset from 1970 to 2020 released by the National Meteorological Information Center and using the empirical orthogonal function (EOF) and Mann-Kendall trend analysis method, we investigated the spatiotemporal variations of rainfall amount, days, and intensity for four types of diurnal precipitation process on the Loess Plateau in summertime (from June to August), including sunny days and rainy nighttime, hot daytime and rainy nighttime, rainfall days for diurnal composite precipitation, as well as rainy daytime and rainless nighttime. The results are as follows: 1) From 2000 to 2020, the Loess Plateau witnessed a significant increase of precipitation amount in summertime and nighttime, which had not changed the spatial pattern characterized by a decreasing gradient of precipitation from southeast to northwest. 2) Consistent with the fluctuating precipitation amount and decreased precipitation days, there was a significant increasing trend for the precipitation intensity in sunny days and rainy nighttime, rainfall days for diurnal composite precipitation, rainy daytime and rainless nighttime from 2000 to 2020, while for hot daytime and rainy nighttime the precipitation intensity maintained stable fluctuations after the 1990s. 3) Areas in the central arid zone of Ningxia, eastern part of the Hetao Plain, northern Shanxi Province, and from the Fen-Wei Plain to the Yiluo River Plain were sensitive to the variations of sunny days and rainy nighttime. However, the Earth-Rock Mountain and high-altitude regions of the southwestern Loess Plateau are sensitive to hot daytime and rainy nighttime changes. Meanwhile, we observed a high sensitivity for the variations of rainfall days for diurnal composite precipitation, as well as rainy daytime and rainless nighttime in the valley and plain areas of the southeastern part of the Loess Plateau. The findings highlight that the increased intensity of daytime precipitation and diurnal composite precipitation is changing the patterns of diurnal extreme precipitation on the Loess Plateau, inspiring to enhance the research regarding the variations and mechanism of diurnal extreme precipitation in summertime.
图7 1970—2020年黄土高原夏季昼晴夜雨、昼伏夜雨降水日数空间主导模态和时间系数变化特征注:图a、c中13.9%和16.5%分别表示主导空间模态方差贡献率。图8同。 Fig.7 Change of first leading spatial mode and time series of summer rainfall days for sunny days and rainy nighttime or hot daytime and rainy nighttime on the Loess Plateau during 1970-2020 based on EOF analysis |
表1 PDO和AMO不同相位组合下黄土高原夏季4种昼夜降水类型降雨量、天数和强度变化趋势Tab.1 Trends of rainfall amount, days, and intensity for four types of diurnal composite precipitation process on the Loess Plateau during the three combined PDO and AMO phases |
指标 | 类型 | PDO-与AMO- (1970—1978年) | PDO+与AMO- (1979—1997年) | PDO-与AMO+ (1998—2020年) | |||||
---|---|---|---|---|---|---|---|---|---|
趋势值 | P值 | 趋势值 | P值 | 趋势值 | P值 | ||||
降雨量 | 昼晴夜雨 | 25.12 | 0.60 | -3.43 | 0.73 | 15.50 | 0.09 | ||
昼伏夜雨 | 34.24 | 0.25 | -2.18 | 0.83 | 9.99 | 0.09 | |||
昼夜连雨 | 60.82 | 0.35 | -3.84 | 0.83 | 20.49 | 0.05* | |||
昼雨夜晴 | -2.16 | 0.92 | 1.50 | 0.44 | 4.30 | 0.02* | |||
降水日数 | 昼晴夜雨 | 0.43 | 0.92 | -0.17 | 0.83 | 0.21 | 0.44 | ||
昼伏夜雨 | -0.60 | 0.35 | 0.43 | 0.13 | 0.31 | 0.06 | |||
昼夜连雨 | 3.44 | 0.35 | -3.04 | 0.03* | -1.37 | 0.04* | |||
昼雨夜晴 | -1.69 | 0.75 | -0.54 | 0.33 | -1.89 | 0.01* | |||
降水强度 | 昼晴夜雨 | 0.14 | 0.60 | -0.09 | 0.53 | 0.13 | 0.10 | ||
昼伏夜雨 | 2.12 | 0.18 | -1.72 | 0.21 | -0.29 | 0.63 | |||
昼夜连雨 | 0.03 | 0.92 | 0.12 | 0.12 | 0.33 | 0.01* | |||
昼雨夜晴 | -0.01 | 0.99 | 0.01 | 0.44 | 0.04 | 0.01* |
注:*表示变化趋势通过0.05显著水平检验;降雨量趋势单位为mm/10 a,降水日数趋势单位为d/10 a,降水强度趋势单位为mm/(d·a)。 |
[1] |
|
[2] |
|
[3] |
王光谦, 张宇, 谢笛, 等. 中国绿水格局及其战略意义[J]. 地理学报, 2023, 78(7): 1641-1658.
[
|
[4] |
|
[5] |
傅伯杰, 刘彦随, 曹智, 等. 黄土高原生态保护和高质量发展现状、问题与建议[J]. 中国科学院院刊, 2023, 38(8): 1110-1117.
[
|
[6] |
|
[7] |
李双双, 孔锋, 韩鹭, 等. 陕北黄土高原区极端降水时空变化特征及其影响因素[J]. 地理研究, 2020, 39(1): 140-151.
[
|
[8] |
汤秋鸿, 徐锡蒙, 贺莉, 等. 黄河中游生态水文模型及洪旱灾害风险评估[J]. 地理学报, 2023, 78(7): 1666-1676.
[
|
[9] |
孙艺杰, 刘宪锋, 任志远, 等. 1960—2016年黄土高原干旱和热浪时空变化特征[J]. 地理科学进展, 2020, 39(4): 591-601.
[
|
[10] |
卢珊, 胡泽勇, 付春伟, 等. 黄土高原夏季极端降水及其成因分析[J]. 高原气象, 2022, 41(1): 241-254.
[
|
[11] |
张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望[J]. 科学通报, 2023, 68(14): 1814-1828.
[
|
[12] |
丁一汇, 司东, 柳艳菊, 等. 论东亚夏季风的特征、驱动力与年代际变化[J]. 大气科学, 2018, 42(3): 533-558.
[
|
[13] |
|
[14] |
赵慧霞, 卓莹莹, 刘厚凤. 1961—2019年黄河流域降水量时空变化特征分析[J]. 人民黄河, 2022, 44(3): 26-31.
[
|
[15] |
|
[16] |
张宝庆, 田磊, 赵西宁, 等. 植被恢复对黄土高原局地降水的反馈效应研究[J]. 中国科学: 地球科学, 2021, 51(7): 1080-1091.
[
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
李双双, 胡佳岚, 何锦屏, 等. 秦岭南北夏季昼晴夜雨雨量时空变化及其影响因素[J]. 山地学报, 2023, 41(3): 399-410.
[
|
[25] |
|
[26] |
国家发展改革委, 水利部, 农业部, 等. 黄土高原地区综合治理规划大纲(2010—2030年)[EB/OL]. 2010-12-30 [2023-12-01]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201101/t20110117_962112.html.
[
|
[27] |
魏凤英. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 2007.
[
|
[28] |
|
[29] |
|
[30] |
|
[31] |
丁一汇, 李怡, 王遵娅, 等. 亚非夏季风的年代际变化: 大西洋多年代际振荡与太平洋年代际振荡的协同作用[J]. 大气科学学报, 2020, 43(1): 20-32.
[
|
[32] |
|
[33] |
胡佳岚, 李双双. 1970—2020年秦岭南北夏季昼晴夜雨强度变化趋势及其影响因素[J]. 水土保持学报, 2024, 38(1): 149-157.
[
|
[34] |
|
[35] |
|
/
〈 |
|
〉 |