长江流域干旱—热浪复合事件的历史演变及未来预估
邹逸凡(1996— ),男,江苏徐州人,博士生,研究方向为气候变化与极端事件。E-mail: tb23010023a41@cumt.edu.cn |
收稿日期: 2024-02-20
修回日期: 2024-06-18
网络出版日期: 2024-11-26
基金资助
国家自然科学基金项目(51979271)
江苏省自然科学基金项目(BK20211247)
Historical changes and future prediction of compound drought and heatwave events in the Yangtze River Basin
Received date: 2024-02-20
Revised date: 2024-06-18
Online published: 2024-11-26
Supported by
National Natural Science Foundation of China(51979271)
Natural Science Foundation of Jiangsu Province(BK20211247)
全球变暖背景下区域水热条件发生明显改变,导致极端水文气象事件频发,特别是复合型极端事件日益增多,严重威胁了生态环境、公共安全与社会经济发展。长江流域一直以来都是中国极端灾害最频繁的地区之一,受全球变暖影响,近年来也经历了更严重的干旱—热浪复合事件(compound drought and heatwave events,CDHEs),严重制约了长江流域生态保护和高质量发展。为此,论文以长江流域为例,基于长期历史观测资料和CMIP6模式预估数据,采用强度指数(compound drought and heatwave magnitude index,CDHMI)识别长江流域CDHEs,并探讨CDHEs时空演变规律及未来趋势。结果表明:① 历史时期,CDHEs频次和持续时间在1993年后均呈增加趋势。轻度等级的CDHEs发生频次最高,7月的频次和持续时间均为最高,主要发生在长江流域中下游、横断山区和云贵高原等地区。② 23种CMIP6模式中INM-CM4-8、ACCESS-ESM1-5、NESM3、NorESM2-LM和INM-CM5-0是偏差校正后最适合长江流域的5种模式。③ 未来长江流域中下游地区是CDHEs频次和持续时间的高值区,5种模式中NorESM2-LM的年均频次和持续时间最高;多模式集合结果表明,不同情景在近期的差异较小,远期差异明显;SSP1-2.6、SSP2-4.5和SSP5-8.5三种情景下轻度等级CDHEs的年均频次均为最高,轻度、中度、重度和极端4种等级事件在SSP5-8.5达到峰值。研究结果可为长江流域缓解未来的气候变化风险提供科学支持。
邹逸凡 , 宋晓猛 , 马梓策 . 长江流域干旱—热浪复合事件的历史演变及未来预估[J]. 地理科学进展, 2024 , 43(11) : 2242 -2257 . DOI: 10.18306/dlkxjz.2024.11.011
Global warming has led to accelerated changes in the global hydrological cycle, resulting in an increasing number of extreme events and compound events in which multiple extreme events occur simultaneously or consecutively, and are more hazardous than a single extreme event. The Yangtze River Basin has always been one of the areas with the most frequent extreme weather and climate events and disasters in China and has also experienced more severe compound events in recent years due to global changes, which has seriously constrained ecological protection and high-quality development in the region. The Yangtze River Basin is one of the most populous and economically developed regions in China, and climate change and human activities have significantly affected the distribution of water and heat conditions in the region. Therefore, taking the Yangtze River Basin as an example and based on long-term historical observations and CMIP6 model prediction data, this study adopted the compound drought and heatwave magnitude index (CDHMI) to identify compound drought and heatwave events (CDHEs) in the Yangtze River Basin, used cumulative probability density curves to classify the intensity of CDHEs, and explored the spatial and temporal evolution patterns of the compound drought and heatwave events as well as the future trends. Meanwhile, to ensure the accuracy of the data, the applicability of the 23 CMIP6 models in the Yangtze River Basin was assessed using three evaluation metrics, which improved the credibility of future CDHEs predictions. Finally, the spatial changes of CDHEs in the Yangtze River Basin under different future scenarios were characterized based on a multi-model ensemble of 23 CMIP6 data. The results of the study show that: 1) During the historical period, the frequency and duration of CDHEs showed a non-significant increasing trend. The frequency and duration of CDHEs were the highest in July, at 0.511 times and 3.59 days, respectively. The frequency of mild CDHEs was the highest in the historical period, with an annual average frequency of 0.4 times, which mainly occurred in the middle and lower reaches of the Yangtze River Basin, the Hengduan Mountains, and the Yunnan-Guizhou Plateau. 2) Among the 23 CMIP6 models, INM-CM4-8, ACCESS-ESM1-5, NESM3, NorESM2-LM, and INM-CM5-0 are the five most suitable models for the Yangtze River Basin after bias correction. 3) In the future, the middle and lower reaches of the Yangtze River Basin will be the areas with high frequency and long duration of CDHEs, and the annual average frequency and duration of CDHEs by the NorESM2-LM model are the highest. The results of the five models and multi-modal ensemble also show small differences between scenarios in the short term and medium term and significant differences in the long term. In the long term of SSP5-8.5, the average annual frequency of CDHEs would increase by 2.3 times and 1.8 times, respectively, compared to the short term and medium term under the same scenario. The duration was 29.9 days and 21.3 days higher than that of SSP1-2.6 and SSP2-4.5 during the same period. The average annual frequency of mild CDHEs is the highest for all three scenarios, and all severity events should peak at SSP5-8.5. This findings can provide scientific and technical support to actively mitigate future climate change risks in the Yangtze River Basin.
表1 CMIP6模式信息Tab.1 CMIP6 model information |
序号 | 模式 | 机构 | 国家 | 分辨率 |
---|---|---|---|---|
1 | ACCESS-CM2 | 联邦科学与工业研究组织 | 澳大利亚 | 1.88°×1.25° |
2 | ACCESS-ESM1-5 | 联邦科学与工业研究组织 | 澳大利亚 | 1.88°×1.25° |
3 | BCC-CSM2-MR | 中国气象局国家气候中心 | 中国 | 1.13°×1.12° |
4 | CanESM5 | 加拿大环境局气候模拟与分析中心 | 加拿大 | 2.81°×2.79° |
5 | CMCC-ESM2 | 欧洲地中海气候变化中心 | 意大利 | 1.25°×0.94° |
6 | EC-Earth3 | 欧盟地球系统模式联盟 | 欧盟 | 0.7°×0.7° |
7 | EC-Earth3-Veg | 欧盟地球系统模式联盟 | 欧盟 | 0.7°×0.7° |
8 | EC-Earth3-Veg-LR | 欧盟地球系统模式联盟 | 欧盟 | 0.7°×0.7° |
9 | FGOALS-g3 | 中国科学院 | 中国 | 2.0°×2.28° |
10 | GFDL-ESM4 | 国家大气海洋局地球流体动力学实验室 | 美国 | 1.25°×1° |
11 | INM-CM4-8 | 俄罗斯科学院计算数学研究所 | 俄罗斯 | 2.0°×1.5° |
12 | INM-CM5-0 | 俄罗斯科学院计算数学研究所 | 俄罗斯 | 2.0°×1.5° |
13 | IPSL-CM6A-LR | 皮埃尔—西蒙拉普拉斯研究所 | 法国 | 2.5°×1.27° |
14 | KACE-1-0-G | 韩国气象厅 | 韩国 | 1.88°×1.25° |
15 | KIOST-ESM | 韩国海洋科学技术院 | 韩国 | 1.88°×1.89° |
16 | MIROC6 | 日本海洋地球科技研究所 | 日本 | 1.41°×1.4° |
17 | MPI-ESM1-2-HR | 马克斯—普朗克气象研究所 | 德国 | 0.94°×0.93° |
18 | MPI-ESM1-2-LR | 马克斯—普朗克气象研究所 | 德国 | 1.88°×1.86° |
19 | MRI-ESM2-0 | 日本气象局气象研究所 | 日本 | 1.13°×1.12° |
20 | NESM3 | 南京信息工程大学 | 中国 | 1.88°×1.86° |
21 | NorESM2-LM | 挪威气候中心 | 挪威 | 2.5°×1.89° |
22 | NorESM2-MM | 挪威气候中心 | 挪威 | 1.25°×0.94° |
23 | TaiESM1 | 台湾“中央研究院”环境变迁研究中心 | 中国 | 1.25°×0.94° |
[1] |
IPCC. Climate change 2021: The physical science basis[M]. Cambridge, UK: Cambridge University Press, 2021: 4-31.
|
[2] |
|
[3] |
温庆志, 孙鹏, 张强, 等. 非平稳标准化降水蒸散指数构建及中国未来干旱时空格局[J]. 地理学报, 2020, 75(7): 1465-1482.
[
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
薛倩, 谢苗苗, 郭强, 等. 地理学视角下城市高温热浪脆弱性评估研究进展[J]. 地理科学进展, 2020, 39(4): 685-694.
[
|
[9] |
|
[10] |
|
[11] |
顾颖, 刘静楠, 林锦. 近60年来我国干旱灾害特点和情势分析[J]. 水利水电技术, 2010, 41(1): 71-74.
[
|
[12] |
金佳鑫, 肖园园, 金君良, 等. 长江流域极端水文气象事件时空变化特征及其对植被的影响[J]. 水科学进展, 2021, 32(6): 867-876.
[
|
[13] |
沈皓俊, 游庆龙, 王朋岭, 等. 1961—2014年中国高温热浪变化特征分析[J]. 气象科学, 2018, 38(1): 28-36.
[
|
[14] |
叶殿秀, 尹继福, 陈正洪, 等. 1961—2010年我国夏季高温热浪的时空变化特征[J]. 气候变化研究进展, 2013, 9(1): 15-20.
[
|
[15] |
|
[16] |
郝增超, 陈阳. 地球系统视角下的多圈层复合极端事件研究进展与展望[J]. 中国科学: 地球科学, 2024, 54(2): 360-393.
[
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
熊少堂, 赵铜铁钢, 郭成超, 等. 我国各大流域复合高温干旱事件变化趋势与归因分析[J]. 中国科学: 地球科学, 2024, 54(1): 83-96.
[
|
[22] |
|
[23] |
孙艺杰, 刘宪锋, 任志远, 等. 1960—2016年黄土高原干旱和热浪时空变化特征[J]. 地理科学进展, 2020, 39(4): 591-601.
[
|
[24] |
姜雨彤, 郝增超, 冯思芳, 等. 长江与黄河流域复合高温干旱事件时空演变特征[J]. 水资源保护, 2023, 39(2): 70-77.
[
|
[25] |
|
[26] |
|
[27] |
郝增超, 张璇, 郝芳华, 等. 2022年夏季长江流域复合高温干旱事件的影响及应对[J]. 水资源保护, 2023, 39(6): 46-52.
[
|
[28] |
|
[29] |
|
[30] |
黄家祺. 长江流域旱涝时空分析与预测模型检验研究[D]. 上海: 华东师范大学, 2023.
[
|
[31] |
|
[32] |
|
[33] |
|
[34] |
任婧宇, 彭守璋, 曹扬, 等. 1901—2014年黄土高原区域气候变化时空分布特征[J]. 自然资源学报, 2018, 33(4): 621-633.
[
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
陈曦, 李宁, 黄承芳, 等. 综合湿度和温度影响的中国未来热浪预估[J]. 地理科学进展, 2020, 39(1): 36-44.
[
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
张文青, 刘浏, 伦玉蕊, 等. 青藏高原未来极端降水时空变化特征及海拔依赖性研究[J]. 水土保持学报, 2023, 37(2): 149-158, 216.
[
|
[48] |
|
[49] |
|
/
〈 |
|
〉 |