基于GRACE数据同化的水文模型构建方法分析与展望
罗增良(1990— ),男,河南周口人,博士,教授,博士生导师,主要从事水文学及水资源方向的研究工作。E-mail: luozengliang@cug.edu.cn |
收稿日期: 2024-03-31
修回日期: 2024-05-21
网络出版日期: 2024-11-26
基金资助
国家自然科学基金项目(42201038)
Analysis and prospects of hydrological model construction methods based on GRACE data assimilation
Received date: 2024-03-31
Revised date: 2024-05-21
Online published: 2024-11-26
Supported by
National Natural Science Foundation of China(42201038)
GRACE卫星反演的水储量信息为研究水循环过程提供了高精度数据,但如何把GRACE卫星水储量数据同化到现有分布式水文模型的径流模拟过程,已成为限制GRACE数据应用于水文模型、提高径流模拟精度的关键科学问题。论文在综述国内外研究进展的基础上,归纳总结GRACE水储量数据同化的常用方法、现有数据同化方式的原理及优缺点,以及不同数据同化方式提高水文模型精度的程度。进而,总结GRACE水储量数据同化存在的难点问题,并展望可能的破解途径。梳理结果表明,GRACE水储量数据同化面临的难点问题包括水文模型精细的建模需求与GRACE数据粗糙时空分辨率的矛盾问题,以及水文模型单独模拟水储量分量与GRACE数据表示陆表总的水储量变化的矛盾问题;综合前人在不同流域的研究结果表明,通过GRACE水储量数据同化,水文模型水储量模拟值的均方根误差减少了约5%~40%,相关性系数提高了约10%~50%,但径流模拟精度的提高幅度比较有限,相关性系数提高了约2%~16%。研究结果将为推动GRACE卫星水储量数据同化的水文模型开发及应用研究提供理论和方法参考。
关键词: GRACE卫星水储量数据; 分布式水文模型; 陆表水储量; 数据同化; 径流模拟
罗增良 , 董雯雯 , 王伦澈 , 丁相毅 , 黄河清 , 吴云龙 , 钟玉龙 . 基于GRACE数据同化的水文模型构建方法分析与展望[J]. 地理科学进展, 2024 , 43(11) : 2136 -2146 . DOI: 10.18306/dlkxjz.2024.11.003
The water storage information retrieved by GRACE satellite provides high-precision data for the study of water cycle process. However, assimilating terrestrial water storage change data of GRACE satellite into existing distributed hydrological models for streamflow simulation has become a key scientific challenge in utilizing GRACE data to improve the accuracy of water storage and streamflow simulations. Based on a review of current research progress, this article summarized the commonly used methods for assimilating GRACE water storage change data into distributed hydrological model, the principles and advantages/disadvantages of existing data assimilation approaches, and the extent to which different data assimilation methods improve the accuracy of hydrological modeling for water storage and streamflow simulations. Furthermore, this study identified the problems associated with assimilating GRACE water storage change data into distributed hydrological models and then proposed possible solutions to these problems. The results of this study indicate that the challenges in assimilating GRACE water storage change data into distributed hydrological models include: 1) the contradiction between the high spatial and temporal modeling requirements of hydrological models and the low spatial and temporal resolutions of GRACE data and 2) the discrepancy between the individual simulation of water storage components in distributed hydrological models and the representation of total terrestrial water storage changes by GRACE data. Findings from previous studies in different river basins manifest that assimilating GRACE water storage data can reduce the root mean square error of water storage simulations by approximately 5% to 40% and increase the correlation coefficient of water storage simulations by about 10% to 50%. However, the improvement in streamflow simulation accuracy is relatively limited, with an increase in the correlation coefficient of approximately 2% to 16%. This research provides theoretical and methodological references for the development and application of hydrological models assimilating GRACE satellite water storage data.
表1 常用陆表水储量变化数据集Tab.1 Widely used datasets of terrestrial water storage change |
数据名称 | 获取方法 | 时空分辨率 | 时期 | 下载网址 |
---|---|---|---|---|
地下水位 | 实测数据 | 年/站点 | 1968—2018年 | https://doi.org/10.5281/zenodo.10003697 |
ITSG-Grace2018 | 遥感数据 | 日/1° | 2002—2017年 | http://ifg.tugraz.at/ITSG-Grace2018 |
GRACE CSR | 遥感数据 | 月/1° | 2002年至今 | http://www2.csr.utexas.edu/grace/RL06_mascons.html |
GRACE GFZ | 遥感数据 | 月/1° | 2002年至今 | https://earth.gsfc.nasa.gov/geo/data/grace-mascons |
GRACE JPL | 遥感数据 | 月/1° | 2002年至今 | https://search.earthdata.nasa.gov/GRACE |
HHU-IPM-GRACE | 重建数据 | 月/0.25° | 2002—2022年 | https://cstr.cn/18406.11.Terre.tpdc.300612 |
GRID_CSR_GRACE_REC | 重建数据 | 月/0.5° | 1979年至今 | https://doi.org/10.5061/dryad.z612jm6bt |
GRACE-REC | 重建数据 | 日/月/0.5° | 1901—2019年 | https://doi.org/10.6084/m9.figshare.7670849 |
BSWB v2016 | 水量平衡方程 | 月/0.25° | 1979—2015年 | https://doi.org/10.5905/ethz-1007-82 |
[1] |
褚江东, 粟晓玲, 吴海江, 等. 2002—2021年中国陆地水储量及其组分变化分析[J]. 水资源保护, 2023, 39(3): 170-178.
[
|
[2] |
孙倩, 阿丽亚·拜都热拉. 基于GRACE卫星和GLDAS系统的地下水水位估算模型: 以和田地区克里雅河流域为例[J]. 地理科学进展, 2018, 37(7): 912-922.
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
张永强, 黄琦, 刘昌明, 等. 遥感数据产品率定水文模型的潜力研究[J]. 地理学报, 2023, 78(7): 1677-1690.
[
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
曹杰, 肖云, 龙笛, 等. 联合重力卫星和水井资料监测华北平原地下水储量变化[J]. 武汉大学学报(信息科学版), 2024, 49(5): 805-818.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
郝卫峰, 杨伊迪, 刘培冲, 等. GRACE和GRACE-FO缺失数据重建研究进展[J]. 地球物理学进展, 2024, 39(5): 1734-1748.
[
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
赖锡军. 流域水环境过程综合模拟研究进展[J]. 地理科学进展, 2019, 38(8): 1123-1135.
[
|
[23] |
王文, 寇小华. 水文数据同化方法及遥感数据在水文数据同化中的应用进展[J]. 河海大学学报(自然科学版), 2009, 37(5): 556-562.
[
|
[24] |
刘永伟, 王文, 刘元波, 等. 水文模型模拟预报的多源数据同化方法及应用研究进展[J]. 河海大学学报(自然科学版), 2021, 49(6): 483-491.
[
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
孙赫, 苏凤阁. 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J]. 地理科学进展, 2020, 39(7): 1126-1139.
[
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
苟娇娇, 缪驰远, 段青云. 水文模型参数敏感性分析—优化—区域化方法研究进展[J]. 地理科学进展, 2022, 41(7): 1338-1348.
[
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
/
〈 |
|
〉 |