考虑季节性的青藏高原地区公路可达性评价
刘庆芳(1994— ),女,安徽天长人,博士生,主要从事城市与区域可持续发展研究。E-mail: 202131051024@mail.bnu.edu.cn |
收稿日期: 2022-08-27
修回日期: 2022-11-17
网络出版日期: 2023-04-27
基金资助
第二次青藏高原综合科学考察研究项目(2019QZKK0406)
Evaluation of road accessibility in the Qinghai-Tibet Plateau regionconsidering seasonality
Received date: 2022-08-27
Revised date: 2022-11-17
Online published: 2023-04-27
Supported by
The Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0406)
可达性是交通地理学的重要概念之一,准确评价可达性对于交通规划和建设具有重要意义,但目前考虑季节性变化和山区地形影响的可达性评价仍相对较少。青藏高原地区不仅雨季、雪季分明,且具备高海拔和地形复杂等特征,因此,需要在可达性评价中充分考虑季节影响和地形影响。结合多源数据,论文采用成本—距离法评价青藏高原地区公路可达性。结果表明:① 雨季青藏高原地区到基础服务设施的最短时间较于未考虑降水影响的情况变化不大,在雨季全域总可达性平均值增加0.011 h,多出0.021%的地区受降水影响无法在8 h范围内到达最近服务设施。② 受积雪影响,青藏高原全域可达性存在变差的情况,全域雪季最短可达性时间平均增加2.04 h。多出5.41%的地区受降雪影响无法在2 h内到达最近服务设施,多出5.54%的地区无法在[2, 4) h范围内到达最近服务设施。③ 从雨雪季节受降水和积雪影响的可达性季节波动情况来看,雪季可达性波动幅度更大。其中,可达性受降水影响最大的地区主要聚集在珠穆朗玛峰附近以及雅鲁藏布江大峡谷附近地区;可达性受积雪影响最严重的地区主要聚集在西藏自治区的东部、青海省的南部、四川省的西部,多分布在横断山区、唐古拉山脉、巴颜喀拉山脉等地形区内。研究结果可为青藏高原地区提高交通路网的稳定性与优化交通路网布局提供科学参考。
刘庆芳 , 卢文清 , 戴特奇 , 宋金平 , 刘宇藩 , 李洁 . 考虑季节性的青藏高原地区公路可达性评价[J]. 地理科学进展, 2023 , 42(4) : 687 -700 . DOI: 10.18306/dlkxjz.2023.04.006
Accessibility is one of the most important concepts in transportation geography. Accurate evaluation of accessibility is of great significance for transportation planning and development. However, there is a lack of literature on accessibility assessment that considered seasonal variation and mountainous terrain influence. The Qinghai-Tibet Plateau is characterized by distinct rainy season and snow season, as well as high altitude and complex terrain. Therefore, this study fully considered seasonal and terrain influences in the evaluation of accessibility. Combined with multi-source data, the cost-distance model was adopted in this study to evaluate the road accessibility in the Qinghai-Tibet Plateau region. The results are as follows: 1) The shortest time to basic service facilities in the Qinghai-Tibet Plateau region during the rainy season considering the influence of precipitation had little change compared with the situation without considering the influence of precipitation. In the rainy season, the average value of the total accessibility of the whole region increased by 0.011 hours, and more than 0.021% of the areas could not reach the nearest service facilities within 8 hours because of the impact of rainfall. 2) Affected by snow cover, the total accessibility of the Qinghai-Tibet Plateau region became worse, and the minimum road accessibility time in the snow season increased by 2.04 hours on average. Given the effect of snowfall, more than 5.41% of the areas could not reach the nearest service facility within 2 hours, and more than 5.54% of the areas could not reach the nearest service facility within 2-4 hours. 3) According to the seasonal change of accessibility affected by precipitation and snow cover in the rainy season and snow season, the fluctuation range of accessibility in the snow season was larger. The areas with the greatest impact on accessibility by precipitation mainly concentrated near the Mount Qomolangma and the Yarlung Zangbo River Grand Canyon, while the areas that were most seriously affected by snow cover mainly concentrated in the eastern part of Tibet Autonomous Region, the southern part of Qinghai Province, and the western part of Sichuan Province, which are mainly distributed in the Hengduan Mountainous area, Tanggula Mountains range, Bayan Har Mountains range, and other topographic areas.
表1 青藏高原地区交通可达性评价指标Tab.1 Evaluation indicators of transportation accessibility in the Qinghai-Tibet Plateau region |
设施类型 | 包含的POI类型 | POI数量/个 |
---|---|---|
医疗服务设施 | 诊所 | 2915 |
综合医院 | 1538 | |
商业服务设施 | 购物服务:商场、超级市场、便民商店/便利店 | 17211 |
金融保险服务:银行 | 2202 | |
城市功能服务 | 县级政府驻地 | 161 |
地级市政府驻地 | 19 | |
交通设施服务 | 火车站站点 | 64 |
机场 | 19 |
表2 雨季分设施的不同可达性范围的面积占比Tab.2 Areal proportion of accessibility areas of different facilities during the rainy season |
设施类别 | 可达性范围/h | 占青藏全域总面积的比重/% | ||
---|---|---|---|---|
未考虑降水影响 | 考虑降水影响 | 降水影响的变化 | ||
医疗服务设施 | [0, 2) | 21.827 | 21.814 | -0.013 |
[2, 4) | 17.678 | 17.676 | -0.002 | |
[4, 6) | 11.821 | 11.822 | 0.001 | |
[6, 8) | 7.763 | 7.762 | -0.001 | |
≥8 | 40.911 | 40.926 | 0.014 | |
商业服务设施 | [0, 2) | 25.887 | 25.875 | -0.013 |
[2, 4) | 19.969 | 19.970 | 0.001 | |
[4, 6) | 11.581 | 11.578 | -0.002 | |
[6, 8) | 6.995 | 6.994 | -0.001 | |
≥8 | 35.568 | 35.584 | 0.015 | |
城市功能服务设施 | [0, 2) | 3.912 | 3.911 | -0.001 |
[2, 4) | 9.978 | 9.976 | -0.003 | |
[4, 6) | 12.116 | 12.105 | -0.011 | |
[6, 8) | 11.124 | 11.113 | -0.011 | |
≥8 | 62.870 | 62.896 | 0.026 | |
交通服务设施 | [0, 2) | 7.700 | 7.700 | 0 |
[2, 4) | 15.989 | 15.989 | 0 | |
[4, 6) | 16.018 | 16.014 | -0.003 | |
[6, 8) | 14.851 | 14.833 | -0.017 | |
≥8 | 45.443 | 45.464 | 0.021 |
图3 未考虑降水情况下的总可达性(a)和考虑降水影响的雨季总可达性(b)Fig.3 Total accessibility without considering the impact of precipitation (a) and total accessibility in the rainy season considering the impact of precipitation (b) |
表3 雨季不同可达性范围的总可达性结果对比Tab.3 Comparison of total accessibility of different accessibility areas in the rainy season |
可达性/h | 占青藏全域总面积的比重/% | ||
---|---|---|---|
未考虑降水影响 | 考虑降水影响 | 降水影响的变化 | |
[0, 2) | 16.237 | 16.235 | -0.002 |
[2, 4) | 26.394 | 26.369 | -0.025 |
[4, 6) | 15.784 | 15.789 | 0.005 |
[6, 8) | 7.997 | 7.998 | 0.001 |
≥8 | 33.589 | 33.609 | 0.021 |
表4 雪季分设施的不同可达性范围的面积占比Tab.4 Areal proportion of accessibility areas of different facilities in the snow season |
设施类别 | 可达性 范围/h | 占青藏全域总面积的比重/% | ||
---|---|---|---|---|
未考虑积雪影响 | 考虑积雪 影响 | 积雪影响的变化 | ||
医疗服务设施 | [0, 2) | 21.83 | 17.40 | -4.43 |
[2, 4) | 17.68 | 15.72 | -1.96 | |
[4, 6) | 11.82 | 11.72 | -0.10 | |
[6, 8) | 7.76 | 8.33 | 0.57 | |
≥8 | 40.91 | 46.83 | 5.92 | |
商业服务设施 | [0, 2) | 25.89 | 20.16 | -5.73 |
[2, 4) | 19.97 | 18.65 | -1.32 | |
[4, 6) | 11.58 | 12.37 | 0.79 | |
[6, 8) | 6.99 | 8.00 | 1.00 | |
≥8 | 35.57 | 40.83 | 5.26 | |
城市功能服务设施 | [0, 2) | 3.91 | 2.63 | -1.28 |
[2, 4) | 9.98 | 6.32 | -3.66 | |
[4, 6) | 12.12 | 8.84 | -3.28 | |
[6, 8) | 11.12 | 9.35 | -1.77 | |
≥8 | 62.87 | 72.85 | 9.98 | |
交通服务设施 | [0, 2) | 7.70 | 5.68 | -2.02 |
[2, 4) | 15.99 | 11.72 | -4.27 | |
[4, 6) | 16.02 | 11.61 | -4.41 | |
[6, 8) | 14.85 | 11.87 | -2.98 | |
≥8 | 45.44 | 59.13 | 13.68 |
图6 未考虑积雪情况下的总可达性(a)和考虑积雪影响的总可达性(b)Fig.6 Total accessibility without considering the impact of snow cover (a) and considering the impact of snow cover (b) |
表5 雪季不同可达性范围的总可达性结果对比Tab.5 Comparison of total accessibility of different accessibility areas in the snow season |
可达性/h | 占青藏全域总面积的比重/% | ||
---|---|---|---|
未考虑积雪影响 | 考虑积雪影响 | 积雪影响的变化 | |
[0, 2) | 16.24 | 10.83 | -5.41 |
[2, 4) | 26.39 | 20.85 | -5.54 |
[4, 6) | 15.78 | 18.14 | 2.36 |
[6, 8) | 7.99 | 10.55 | 2.56 |
≥8 | 33.59 | 39.62 | 6.03 |
[1] |
冯凤江, 程新平, 孙晓宁. 高速公路雾天人工和智能网联车混行交通流仿真[J]. 中国安全科学学报, 2022, 32(7): 158-164.
[
|
[2] |
何杰, 张长健, 严欣彤, 等. 基于微观动力学参数的高速公路特征路段事故风险分析[J/OL]. 吉林大学学报(工学版), 2022. http://kns.cnki.net/kcms/detail/22.1341.t.20220802.1255.006.html.
[
|
[3] |
苗毅, 卢文清, 戴特奇, 等. 青藏高原市域综合交通优势度评价及空间特征: 以林芝市为例[J]. 地理科学进展, 2021, 40(8): 1332-1343.
[
|
[4] |
汪双杰, 陈建兵, 章金钊, 等. 青藏高原多年冻土区公路修筑技术之进展[J]. 中国科学(技术科学), 2009(1): 8-15.
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
陈卓, 金凤君, 王姣娥. 基于高速公路流的东北大都市区边界识别与结构特征研究[J]. 地理科学, 2019, 39(6): 929-937.
[
|
[9] |
|
[10] |
王菲, 李善同. 交通发展、时空压缩与产业区位效应: 以公路建设为例[J]. 上海经济研究, 2022, 34(4): 88-98.
[
|
[11] |
|
[12] |
|
[13] |
商硕, 蒋海兵, 韦胜. 人口流动视角下中国地级以上城市空间联系格局与影响因素[J]. 智库理论与实践, 2022, 7(2): 117-129.
[
|
[14] |
刘建荣, 郝小妮. 到达车站的步行时间对老年人公交选择的影响[J]. 交通运输系统工程与信息, 2020, 20(1): 124-129.
[
|
[15] |
吕彪, 刘一骝, 刘海旭. 协同考虑脆弱性与可靠性的城市道路网络设计[J]. 西南交通大学学报, 2019, 54(5): 1093-1103.
[
|
[16] |
|
[17] |
|
[18] |
张存保, 万平, 梅朝辉, 等. 雨天环境下高速公路交通流特性及模型研究[J]. 武汉理工大学学报, 2013, 35(3): 63-67.
[
|
[19] |
龚大鹏, 宋国华, 黎明, 等. 降雨对城市道路行程速度的影响[J]. 交通运输系统工程与信息, 2015, 15(1): 218-225.
[
|
[20] |
孙洪运, 杨金顺, 吴兵. 暴雨对快速路速度—密度关系影响的实证分析[J]. 交通运输系统工程与信息, 2016, 16(3): 221-227.
[
|
[21] |
戢晓峰, 张琪, 覃文文, 等. 恶劣天气对高原山区高速公路交通流特征的影响分析[J]. 交通信息与安全, 2020, 38(4): 10-16.
[
|
[22] |
龚开江, 王洪亮, 柏小俊, 等. 降雨强度对山区高速公路运行车速的影响研究[J]. 价值工程, 2021, 40(15): 197-199.
[
|
[23] |
金凤君, 刘毅. 青藏高原产业发展的交通运输门槛研究[J]. 自然资源学报, 2000, 15(4): 363-368.
[
|
[24] |
朱燕, 侯光良, 兰措卓玛, 等. 基于GIS的青藏高原史前交通路线与分区分析[J]. 地理科学进展, 2018, 37(3): 438-449.
[
|
[25] |
高兴川, 曹小曙, 李涛, 等. 1976—2016年青藏高原地区通达性空间格局演变[J]. 地理学报, 2019, 74(6): 1190-1204.
[
|
[26] |
|
[27] |
|
[28] |
蒋海兵, 张文忠, 祁毅, 等. 区域交通基础设施可达性研究进展[J]. 地理科学进展, 2013, 32(5): 807-817.
[
|
[29] |
|
[30] |
冉逸箫, 张凤荣, 张佰林, 等. 贫困山区农村衰落的特征及诊断: 以重庆市酉阳县为例[J]. 资源科学, 2017, 39(6): 999-1012.
[
|
[31] |
曾冰, 张艳, 胡亚光. 基于交通可达性与城市竞争力的城市腹地范围识别: 以长江中游城市群为例[J]. 热带地理, 2020, 40(1): 119-127.
[
|
[32] |
国家统计局. 中国城市统计年鉴 2021 [M]. 北京: 中国统计出版社, 2021.
[National Bureau of Statistics. China City Statistical Yearbook 2021. Beijing: China Statistics Press, 2021. ]
|
[33] |
湛东升, 谢春鑫, 张文忠, 等. 基于累计机会可达性的北京城市公共服务设施复合功能识别[J]. 地球信息科学学报, 2020, 22(6): 1320-1329.
[
|
[34] |
除多, 洛桑曲珍, 林志强, 等. 近30年青藏高原雪深时空变化特征分析[J]. 气象, 2018, 44(2): 233-243.
[
|
[35] |
任园园. 冰雪条件下城市道路交通流特性及管理对策研究[D]. 长春: 吉林大学, 2008.
[
|
[36] |
马筱栎, 樊博. 降雨对山区高速公路运行车速的影响研究[J]. 公路与汽运, 2020(5): 33-36.
[
|
[37] |
|
[38] |
王姣娥, 陈娱, 戴特奇, 等. 中国交通地理学的传承发展与创新[J]. 经济地理, 2021, 41(10): 59-69.
[
|
/
〈 |
|
〉 |