基于BCC-CSM1-1模拟的过去千年黄河中上游径流百年尺度变化的归因分析
王敏霞(1996— ),女,河南周口人,硕士生,主要从事气候变化影响研究。E-mail: wangmx1@qq.com |
收稿日期: 2021-12-23
修回日期: 2022-03-12
网络出版日期: 2022-09-28
基金资助
国家自然科学基金项目(41790424)
Attribution analysis of centennial scale changes of runoff in the Yellow River Basin over the past millennium based on BCC-CSM1-1 simulation
Received date: 2021-12-23
Revised date: 2022-03-12
Online published: 2022-09-28
Supported by
National Natural Science Foundation of China(41790424)
气候变化对径流的影响是全球变化研究领域的重点问题。论文采用BCC-CSM1-1模拟的过去千年(850—2012年)气候与水文变化数据,基于Budyko假设与傅抱璞公式开展了中世纪气候异常期(MCA)、小冰期(LIA)和现代暖期(MWP)黄河中、上游径流变化及其归因分析。结果表明:① 在3个气候特征期之间,上游地区径流与气候冷暖变化位相相同,MWP时期径流最高,LIA时期径流最低;中游地区径流则与气候冷暖变化位相相反,LIA径流最高,MCA径流最低。② 径流对各因子的敏感性不仅存在地理差异,而且受特征期之间气候冷暖转变的影响。中游地区径流对降水和潜在蒸发的弹性系数(绝对值)大于上游,且在冷转暖过程中的弹性系数(绝对值)略大于暖转冷过程。同时,持续偏暖过程中、上游地表变化的弹性系数(绝对值)均明显大于暖转冷与冷转暖过程。③ 3个特征期之间径流差异主要由降水主导,地表变化影响甚微,但潜在蒸发的作用存在地域差异,上游地区潜在蒸发部分抵消了降水变化的贡献而中游地区潜在蒸发则加强了降水导致的径流变化。研究量化了黄河流域各因子对过去千年百年尺度径流变化的贡献,明确了不同气候转变期各因子贡献的差异,为更好地研究径流量多尺度变化及其成因奠定了基础。
关键词: BCC-CSM1-1; 过去千年; 径流; 百年尺度; 黄河中上游
王敏霞 , 张学珍 , 荆文龙 . 基于BCC-CSM1-1模拟的过去千年黄河中上游径流百年尺度变化的归因分析[J]. 地理科学进展, 2022 , 41(7) : 1226 -1238 . DOI: 10.18306/dlkxjz.2022.07.007
As the hydrological cycle changes intensify with climate warming, the relationship between runoff and climate change has become a hot topic of research. This study simulated runoff changes between the three distinct climate stages during the last millennium—that is, Medieval Climate Anomaly (MCA), Little Ice Age (LIA), and Modern Warm Period (MWP)—in the upper and middle reaches of the Yellow River using the BCC-CSM1-1 simulation dataset and carried out an attribution analysis with the Budyko Hypothesis and Fu's Formula. The results showed that: 1) At the upper reaches of the Yellow River, there was higher runoff in the MWP and lower runoff in the LIA, and the phase of runoff change was the same as temperature anomaly. However, at the middle reaches of the Yellow River, there was higher runoff in the LIA when it was the coldest while lower runoff in the MCA and MWP when it was warmer. 2) The sensitivity of runoff to various factors showed a geographical difference and was affected by the shift of warm-cold conditions between different climate stages. The elasticity coefficients (absolute value) of runoff to precipitation and potential evaporation in the middle reaches were greater than in the upper reaches, and they were slightly larger during the cold to warm transitional period than in the warm to cold transitional period. Meanwhile, the elasticity coefficient (absolute value) of runoff to land surface changes in the upper and middle reaches during the continuous warming period was significantly greater than in the warm-to-cold and cold-to-warm transitional periods. 3) The runoff discrepancy during the three distinct climate stages was mainly dominated by precipitation, with little influence from land surface change. But there were regional differences in the role of potential evaporation. The effect of potential evaporation in the upper reaches partially offsets the contribution of precipitation to the runoff changes while the potential evaporation in the middle reaches strengthens the runoff changes caused by precipitation.
Key words: BCC-CSM1-1; the past millennium; runoff; centennial scale; Yellow River
表1 8个PMIP3/CMIP5模式的详细信息Tab.1 Detailed information of the eight PMIP3/CMIP5 models |
模式名称 | 分辨率(大气模块) (经度×纬度×层数) | 分辨率(海洋模块) (经度×纬度×层数) | 研发机构 |
---|---|---|---|
BCC-CSM1-1 | 128×64×L40 | 360×232×L40 | 中国气象局北京气候中心 |
IPSL-CM5A-LR | 96×95×L40 | 182×149×L31 | 法国皮埃尔—西蒙·拉普拉斯研究所 |
GISS-E2-R | 144×90×L40 | 288×180×L32 | 美国宇航局戈达德太空研究所 |
CCSM4 | 288×192×L26 | 320×384×L60 | 美国国家大气研究中心 |
HadCM3 | 76×73×L19 | 288×144×L20 | 英国气象局哈德利气候预测和研究中心 |
MPI-ESM-P | 196×98×L47 | 256×220×L40 | 德国马普气象研究所 |
MRI-CGCM3 | 320×160×L48 | 364×368×L51 | 日本气象研究所 |
CSIRO-Mk3L-1-2 | 64×56×L18 | 128×112×L21 | 澳大利亚联邦科学与工业研究组织 |
表2 过去千年黄河上游降水、潜在蒸发以及地表对径流变化的贡献Tab.2 Contributions of precipitation, potential evaporation, and land surface to runoff changes in the upper reaches of the Yellow River during the last millennium (mm) |
时期 | 径流变化总量 | 各因子贡献量 | ||||
---|---|---|---|---|---|---|
∆R | ∆RP | ∆RE0 | ∆RSurface | 误差 | ||
MCA-LIA | -2.98 | -3.02 | 1.48 | -0.34 | -1.10 | |
LIA-MWP | 8.22 | 10.74 | -2.77 | -1.10 | 1.35 | |
MCA-MWP | 5.24 | 7.72 | -1.29 | -1.44 | 0.25 |
注:∆RP、∆RE0、∆RSurface分别表示降水贡献量、潜在蒸发贡献量、地表变化贡献量。下同。 |
表3 过去千年黄河中游降水、潜在蒸发以及地表对径流变化的贡献Tab.3 Contributions of precipitation, potential evaporation, and land surface to runoff changes in the middle reaches of the Yellow River during the last millennium (mm) |
时期 | 径流变化总量 | 各因子贡献量 | ||||
---|---|---|---|---|---|---|
∆R | ∆RP | ∆RE0 | ∆RSurface | 误差 | ||
MCA-LIA | 30.30 | 27.64 | 7.52 | -1.82 | -3.04 | |
LIA-MWP | -6.57 | -4.75 | -4.29 | 0.09 | 2.38 | |
MCA-MWP | 23.73 | 22.89 | 3.23 | -1.73 | -0.66 |
[1] |
姜大膀, 王娜. IPCC AR6报告解读: 水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699-704.
[
|
[2] |
孟德娟, 莫兴国. 气候变化对不同气候区流域年径流影响的识别[J]. 地理科学进展, 2013, 32(4): 587-594.
[
|
[3] |
张士锋, 华东, 孟秀敬, 等. 三江源气候变化及其对径流的驱动分析[J]. 地理学报, 2011, 66(1): 13-24.
[
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
郑子彦, 吕美霞, 马柱国. 黄河源区气候水文和植被覆盖变化及面临问题的对策建议[J]. 中国科学院院刊, 2020, 35(1): 61-72.
[
|
[14] |
王有恒, 谭丹, 韩兰英, 等. 黄河流域气候变化研究综述[J]. 中国沙漠, 2021, 41(4): 235-246.
[
|
[15] |
高鑫, 叶柏生, 张世强, 等. 1961-2006年塔里木河流域冰川融水变化及其对径流的影响[J]. 中国科学: 地球科学, 2010, 40(5): 654-665.
[
|
[16] |
王玉洁, 秦大河. 气候变化及人类活动对西北干旱区水资源影响研究综述[J]. 气候变化研究进展, 2017, 13(5): 483-493.
[
|
[17] |
|
[18] |
|
[19] |
葛全胜, 郑景云, 郝志新, 等. 过去2000年中国气候变化研究的新进展[J]. 地理学报, 2014, 69(9): 1248-1258.
[
|
[20] |
IPCC. Summary for policymakers [M]// Stocker T F, Qin D H, Plattner G K, et al. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report 1 of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013: 3-29.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
鲍振鑫, 严小林, 王国庆, 等. 1956-2016年黄河流域河川径流演变规律[J]. 水资源与水工程学报, 2019, 30(5): 52-57.
[
|
[26] |
黄建平, 张国龙, 于海鹏, 等. 黄河流域近40年气候变化的时空特征[J]. 水利学报, 2020, 51(9): 1048-1058.
[
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
周天军, 陈梓明, 邹立维, 等. 中国地球气候系统模式的发展及其模拟和预估[J]. 气象学报, 2020, 78(3): 332-350.
[
|
[33] |
何艳虎, 陈晓宏, 林凯荣, 等. 东江流域近50年径流系数时空变化特征[J]. 地理研究, 2014, 33(6): 1049-1058.
[
|
[34] |
|
[35] |
傅抱璞. 论陆面蒸发的计算[J]. 大气科学, 1981, 5(1): 23-31.
[
|
[36] |
|
[37] |
傅抱璞. 山地蒸发的计算[J]. 气象科学, 1996, 16(4): 328-335.
[
|
[38] |
杨大文, 张树磊, 徐翔宇. 基于水热耦合平衡方程的黄河流域径流变化归因分析[J]. 中国科学: 技术科学, 2015, 45(10): 1024-1034.
[
|
[39] |
|
[40] |
王绍武, 黄建斌. 近千年中国东部夏季雨带位置的变化[J]. 气候变化研究进展, 2006, 2(3): 117-121, 145.
[
|
[41] |
杜加强, 郭杨, 房孝磊, 等. 近50 a黄河上游气候变化趋势和干湿界线波动分析[J]. 干旱区研究, 2013, 30(2): 291-298.
[
|
[42] |
宋文龙, 杨胜天, 路京选, 等. 黄河中游大尺度植被冠层截留降水模拟与分析[J]. 地理学报, 2014, 69(1): 80-89.
[
|
[43] |
王国庆, 张建云, 刘九夫, 等. 中国不同气候区河川径流对气候变化的敏感性[J]. 水科学进展, 2011, 22(3): 307-314.
[
|
[44] |
王国庆, 王云璋, 康玲玲. 黄河上中游径流对气候变化的敏感性分析[J]. 应用气象学报, 2002, 13(1): 117-121.
[
|
[45] |
|
[46] |
|
[47] |
张建云, 张成凤, 鲍振鑫, 等. 黄淮海流域植被覆盖变化对径流的影响[J]. 水科学进展, 2021, 32(6): 813-823.
[
|
[48] |
|
[49] |
路娜, 胡维平, 邓建才, 等. 大气CO2浓度升高对植物影响的研究进展[J]. 土壤通报, 2011, 42(2): 477-482.
[
|
[50] |
马晶晶, 袁金国. 基于模型模拟的植被NDVI与观测天顶角和LAI的关系[J]. 遥感技术与应用, 2014, 29(4): 539-546.
[
|
[51] |
|
[52] |
勾晓华, 邓洋, 陈发虎, 等. 黄河上游过去1234年流量的树轮重建与变化特征分析[J]. 科学通报, 2010, 55(33): 3236-3243.
[
|
[53] |
孙军艳, 刘禹, 蔡秋芳, 等. 以树木年轮资料重建黄河上游大通河480年以来6-7月径流变化历史[J]. 海洋地质与第四纪地质, 2011, 31(3): 109-116.
[
|
[54] |
|
/
〈 |
|
〉 |