综合湿度和温度影响的中国未来热浪预估
陈曦(1993— ),女,江苏镇江人,博士生,主要从事气候变化风险研究。E-mail: chenxi0409@mail.bnu.edu.cn |
收稿日期: 2019-01-09
要求修回日期: 2019-03-19
网络出版日期: 2020-03-28
基金资助
国家重点研发计划重点专项课题(2016YFA0602403)
国家自然科学基金项目(41775103)
第二次青藏高原综合科学考察研究(2019QZKK0906)
第二次青藏高原综合科学考察研究(2019QZKK0606)
版权
Projection of heatwaves by the combined impact of humidity and temperature in China
Received date: 2019-01-09
Request revised date: 2019-03-19
Online published: 2020-03-28
Supported by
National Key Research and Development Program of China(2016YFA0602403)
National Natural Science Foundation of China(41775103)
The Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(2019QZKK0906)
The Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(2019QZKK0606)
Copyright
地面空气湿度直接影响人体驱散热负荷的效率,持续高温高湿天气将会严重影响人体健康。基于综合考虑温度和湿度协同作用的热胁迫指数——湿球黑球温度(WBGT)指数定义热浪,利用参考时期(1986—2005年)中国824个气象站点逐日平均气温和逐日相对湿度资料以及CMIP5多模式相应模拟数据,论文定量描述了未来时期(2076—2095年)不同排放情景下(RCP2.6、RCP4.5和RCP8.5)中国大陆地区可能遭遇的热浪事件的空间分布特征及其变化。研究结果表明:① 最有效的减排情景(RCP2.6)和高排放情景(RCP8.5)下中国大陆地区的平均热浪日数分别是参考时期的3.4倍和6.6倍,平均热浪强度(一年内所有热浪事件中日平均WBGT指数的最大值)也相对升高了1.6 ℃和4.9 ℃,未来时期RCP8.5情景下中国东部和南部地区的最高年均热浪强度甚至将达到40 ℃;② 虽然青藏高原地区的热浪强度等级低,但是未来时期热浪日数的增加幅度较为显著;③ 华南、长江中下游以及少数西南地区是综合考虑气温和湿度协同作用对人体热舒适的影响下,未来时期可能发生热浪最严重的地区,如果不考虑湿度要素的影响,那么将极有可能低估热浪在中国华南和东部等湿度较高地区的强度和影响。
陈曦 , 李宁 , 黄承芳 , 刘佳伟 , 张正涛 . 综合湿度和温度影响的中国未来热浪预估[J]. 地理科学进展, 2020 , 39(1) : 36 -44 . DOI: 10.18306/dlkxjz.2020.01.004
Humidity is a significant factor contributing to heat stress but it is not fully considered in studies quantifying heat stress or in heat risk assessment. It is directly related to human body heat exchange and the co-occurrence of consecutive hot and humid days during a heatwave can strongly affect human health. In this study, wet-bulb globe temperature (WBGT) considering both temperature and humidity effects was utilized as a heat index to define heatwaves. Using daily mean air temperature and relative humidity data from 824 meteorological stations for the reference period (1986-2005) and the corresponding CMIP5 multi-model simulations, spatial distribution characteristics and change of heatwaves that would occur in China's mainland were analyzed for the future period (2076-2095) under different greenhouse gas emission scenarios (RCP2.6, RCP4.5, and RCP8.5). Our analysis suggests that the average number of heatwave days in a year would be 3.4 and 6.6 times of that for the reference period under the most aggressive mitigation scenario (RCP2.6) and high emission scenario (RCP8.5), respectively. Average heatwave amplitude (as defined by the peak daily WBGT in the hottest heatwave in a year) would increase 4.9 ℃ under RCP8.5 as opposed to about 1.6 ℃ under RCP2.6. In the future period, the highest annual heatwave amplitude of eastern and southern China would reach 40 ℃ under the RCP8.5 scenario, which is higher than the optimum body core temperature (near 37 ℃). Although the Tibet Plateau has low heat amplitude, increase in the annual total heatwave days is rather significant in the future period. Heatwaves in the future would be most serious over southern China, the middle and lower reaches of the Yangtze River and parts of southwestern China considering both temperature and humidity effects on human thermal comfort. It suggests that without taking surface air humidity into consideration, there could likely be an underestimation of intensity and influences of heatwaves over areas with high humidity (such as southern and eastern China).
表1 文中所用的19个全球气候模式信息Tab.1 Overview of the 19 general circulation models (GCMs) used in this study |
模式名称 | 单位及所属国家 | 历史模拟 | RCP2.6 | RCP4.5 | RCP8.5 |
---|---|---|---|---|---|
ACCESS1.0 | CSIRO-BOM, 澳大利亚 | √ | - | √ | √ |
BCC-CSM1.1 | BCC, 中国 | √ | √ | √ | √ |
BNU-ESM | BNU, 中国 | √ | √ | √ | √ |
CanESM2 | CCCma, 加拿大 | √ | √ | √ | √ |
CNRM-CM5 | CNRM-CERFACS, 法国 | √ | √ | √ | √ |
CSIRO-Mk3.6.0 | CSIRO-QCCCE, 澳大利亚 | √ | √ | √ | √ |
GFDL-CM3 | NOAA-GFDL, 美国 | √ | √ | √ | √ |
GFDL-ESM2G | NOAA-GFDL, 美国 | √ | √ | √ | √ |
GFDL-ESM2M | NOAA-GFDL, 美国 | √ | √ | √ | √ |
HadGEM2-CC | MOHC, 英国 | √ | - | √ | √ |
HadGEM2-ES | MOHC, 英国 | √ | √ | √ | √ |
INMCM4.0 | INM, 俄罗斯 | √ | - | √ | √ |
IPSL-CM5A-LR | IPSL, 法国 | √ | √ | √ | √ |
IPSL-CM5A-MR | IPSL, 法国 | √ | √ | √ | √ |
MIROC-ESM | MIROC, 日本 | √ | √ | √ | √ |
MIROC-ESM-CHEM | MIROC, 日本 | √ | √ | √ | √ |
MIROC5 | MIROC, 日本 | √ | √ | √ | √ |
MRI-CGCM3 | MRI, 日本 | √ | √ | √ | √ |
NorESM1-M | NCC, NMI, 挪威 | √ | √ | √ | √ |
图1 参考时期的空间分布(CMIP5模式集合平均、气象站点资料插值结果)及二者之间的平均偏差和平均均方根误差注:本图基于自然资源部标准地图服务网站下载的审图号为GS(2019)1823号的标准地图制作,底图无修改。下同。 Fig.1 Spatial distribution of during the reference period from MME of CMIP5 historical runs (a), interpolation of meteorological station data (b), area mean bias (c), and RMSE (d) |
图2 参考时期和未来时期3个RCP情景下年均热浪日数的空间分布Fig.2 Spatial distribution of heatwave days per year during the reference period and the future period under the three RCP scenarios |
图4 参考时期和未来时期3个RCP情景下热浪强度的空间分布Fig.4 Spatial distribution of heatwave intensity during the reference period and the future period under the three RCP scenarios |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
郑雪梅, 王怡, 吴小影 , 等. 近20 年福建省沿海与内陆城市高温热浪脆弱性比较[J]. 地理科学进展, 2016,35(10):1197-1205.
[
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
叶殿秀, 尹继福, 陈正洪 , 等. 1961—2010年我国夏季高温热浪的时空变化特征[J]. 气候变化研究进展, 2013,9(1):15-20.
[
|
[20] |
高荣, 王凌, 高歌 . 1956—2006年中国高温日数的变化趋势[J]. 气候变化研究进展, 2008,4(3):177-181.
[
|
[21] |
周天军, 李立娟, 李红梅 . 气候变化的归因与预估模拟研究[J]. 大气科学, 2008,32(4):906-922.
[
|
[22] |
姜大膀, 张颖, 孙建奇 . 中国地区1~3 ℃变暖的集合预估分析[J]. 科学通报, 2009,54(24):3870-3877.
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
ISO. Hot environments: Estimation of the heat stress on working man, based on the WBGT index[S]. International Organization for Standardization 7243, 1989.
|
[31] |
|
[32] |
|
[33] |
张艳武, 张莉, 徐影 . CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016,12(1):10-19.
[
|
[34] |
谈建国, 黄家鑫 . 热浪对人体健康的影响及其研究方法[J]. 气候与环境研究, 2004,9(4):680-686.
[
|
[35] |
姚檀栋, 朱立平 . 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006,21(5):459-464.
[
|
[36] |
贺山峰, 戴尔阜, 葛全胜 , 等. 中国高温致灾危险性时空格局预估[J]. 自然灾害学报, 2010,19(2):91-97.
[
|
[37] |
李柔珂 . CMIP5模式对气候变化背景下中国地区未来气候灾害风险预估研究[D]. 兰州: 兰州大学, 2017.
[
|
[38] |
徐新创, 闫军辉, 刘光旭 , 等. CMIP 5不同典型浓度情景下中国极端高温的时空变化[J]. 华中师范大学学报(自然科学版), 2017,51(4):548-554.
[
|
/
〈 |
|
〉 |