中国城市LID技术设施的成本效益区域差异
作者简介:李大龙(1991-),山东潍坊人,博士研究生,研究方向为水文学与水资源,E-mail: lidalong2013@126.com。
网络出版日期: 2017-12-07
基金资助
中国科学院重点部署项目(KFZD-SW-301)
Regional difference of cost effectiveness of low impact development (LID) technical facilities in Chinese cities
Online published: 2017-12-07
Supported by
Key Research Program of the Chinese Academy of Sciences, No.KFZD-SW-301
Copyright
随着城市化进程不断加快,人口和城市规模不断扩张,对现代城市雨洪管理提出了新要求。本文运用情景分析法研究中国城市典型低影响开发(Low Impact Development, LID)技术设施的成本效益。分别以80%与95%降雨场次控制率对应的场次降雨为情景,以30年为服务期计算技术设施的雨水管理效益。研究发现:北方城市的建安成本与维护费用均值高于南方城市,同时受区域降雨量差异的影响,南方城市LID技术设施的雨水处理效益普遍高于北方。而北方城市之间效益差异亦较大,其中京津冀地区及西北地区的城市雨水处理效益尤低。不同技术设施之间差异表现为:原地入渗设施的雨水处理成本在6~188元/m³之间,显著高于具有汇流功能的设施。对降水较少的北方城市建议采用成本低、效果好的下沉式绿地结合雨水湿地的方式;对雨量大、雨强高的南方城市建议采用生物滞留设施结合调节塘的方式,可增大调蓄能力达到降雨场次控制率的要求,同时能够净化地面径流、增强雨水下渗。
关键词: 城市雨洪管理; 低影响开发(LID); 成本效益; 情景分析; 中国
李大龙 , 贾绍凤 , 吕爱锋 , 朱文彬 . 中国城市LID技术设施的成本效益区域差异[J]. 地理科学进展, 2017 , 36(11) : 1402 -1412 . DOI: 10.18306/dlkxjz.2017.11.009
With accelerating urbanization, population growth, and urban expansion, modern urban stormwater management faces new challenges. Based on the scenario analysis method, this study analyzed the cost-effectiveness of China's urban low impact development (LID) technical facilities. We calculated the benefits of different facilities under 80% and 95% rainfall event control rate scenarios respectively in the 30-year service period. The results show that the cost of construction and maintenance in the northern cities are higher than those in the southern cities. Benefits of stormwater management in the southern cities are generally higher than those in the northern cities. In addition, within the northern cities, benefits of urban stormwater management are lower in Beijing, Tianjin, and northwest regions. For different facilities, the cost of stormwater management for in situ infiltration is between 6 and 188 yuan/m³, significantly higher than the technical facilities with confluence function. Due to their low cost and reasonable effectiveness, combined sunken green area and rainwater wetland are suggested for northern cities with low precipitation. In the southern cities with more rainfall and strong rainfall intensity, it is recommended to use biological retention facilities in combination with regulating ponds. These methods not only can increase the storage capacity to meet the requirements of rainfall control rate but also can increase the rainwater infiltration and help purifying rainwater on the ground.
Tab.1 Rainfall duration and rainfall distribution of different hyetographs(Yin et al, 2014)表1 各雨型降雨历时及不同时段降雨量分布(殷水清等, 2014) |
雨型 | 降雨历时分配/% | 雨量分配/% |
---|---|---|
I型 | 0~40 | 72 |
40~60 | 14 | |
60~100 | 14 | |
II型 | 0~40 | 33 |
40~60 | 39 | |
60~100 | 28 | |
III型 | 0~40 | 24 |
40~60 | 16 | |
60~100 | 60 | |
IV型 | 0~40 | 42 |
40~60 | 21 | |
60~100 | 37 |
Tab.2 Statistics of rainfall duration and percentage of events for different hyetographs nationwide for China and for each region(Yin et al, 2014)表2 不同地区各雨型百分比及降雨历时统计值(殷水清等, 2014) |
分区 | 雨型 | 雨型百分比/% | 平均降雨历时/h | (0%~40%)/h | (40%~60%)/h | (60%~100%)/h |
---|---|---|---|---|---|---|
松花江区 | I型 | 43.6 | 21.8 | 8.72 | 4.36 | 8.72 |
II型 | 20.8 | 22.9 | 9.16 | 4.58 | 9.16 | |
III型 | 19.3 | 24.0 | 9.60 | 4.80 | 9.60 | |
IV型 | 16.4 | 24.0 | 9.60 | 4.80 | 9.60 | |
黄河区 | I型 | 46.2 | 15.7 | 6.28 | 3.14 | 6.28 |
II型 | 22.0 | 17.7 | 7.08 | 3.54 | 7.08 | |
III型 | 14.7 | 24.0 | 9.60 | 4.80 | 9.60 | |
IV型 | 17.2 | 24.0 | 9.60 | 4.80 | 9.60 | |
长江1区 | I型 | 52.5 | 17.7 | 7.08 | 3.54 | 7.08 |
II型 | 20.0 | 17.2 | 6.88 | 3.44 | 6.88 | |
III型 | 11.8 | 24.0 | 9.60 | 4.80 | 9.60 | |
IV型 | 15.6 | 24.0 | 9.60 | 4.80 | 9.60 | |
长江2区 | I型 | 44.2 | 19.4 | 7.76 | 3.88 | 7.76 |
II型 | 23.0 | 20.0 | 8.00 | 4.00 | 8.00 | |
III型 | 15.3 | 24.0 | 9.60 | 4.80 | 9.60 | |
IV型 | 17.5 | 24.0 | 9.60 | 4.80 | 9.60 | |
东南诸河区 | I型 | 42.9 | 24.0 | 9.60 | 4.80 | 9.60 |
II型 | 21.5 | 24.0 | 9.60 | 4.80 | 9.60 | |
III型 | 19.3 | 24.0 | 9.60 | 4.80 | 9.60 | |
IV型 | 16.3 | 24.0 | 9.60 | 4.80 | 9.60 |
Tab.3 Design parameters of low impact development (LID) facilities表3 LID设施的主要设计物理参数 |
技术设施 | 透水铺装 | 屋顶种植 | 下沉式绿地 | 生物滞留设施 | 雨水湿地 | 调节塘 |
---|---|---|---|---|---|---|
设施结构层渗透系数/(mm/h) | 360 | 40 | 40 | 40 | 40 | 40 |
容积/(m³/m2) | 0.095 | 0.105 | 0.21 | 0.55 | 0.68 | 1.62 |
表面蓄水层高度/mm | 无 | 无 | 150 | 250 | 400 | 1500 |
TSS去除率/% | 85 | 75 | 60 | 85 | 70 | 60 |
寿命周期/a | 10 | 15 | 15 | 15 | 30 | 30 |
维护成本/(%/a) | 5 | 8 | 5 | 8.5 | 5 | 5 |
注:TSS是总悬浮固体,此处指水体中的总悬浮物。 |
Fig.1 Schematic diagram of water balance图1 水量示意图 |
Fig.2 Total rainfall infiltration of in situ infiltration facilities for all climatic regions in 30-year service period图2 30年服务期内原地入渗设施总蓄渗雨量 |
Fig.3 Ratio of the confluence area to the facility area and total rainfall infiltration of low impact development (LID) facilities in 30-year service period under 80% and 95% rainfall scenarios图3 30年服务期内80%与95%降雨情景下设施服务面积与自身面积比值及设施总蓄渗水量 |
Fig.4 Total cost of installation and maintenance of low impact development (LID) facilities in 30-year service period图4 30年服务期内设施建筑安装及运行维护总成本费用 |
Fig.5 Cost of unit volume rainwater treatment by low impact development (LID) facilities in 30-year service period under 80% and 95% rainfall scenarios图5 30年服务期内原地入渗设施单位体积雨水处理成本 |
Fig.6 Cost of unit volume rainwater storage and infiltration, rainwater purification by low impact development (LID) facilities in 30-year service period under 80% and 95% rainfall scenarios图6 30年服务期内80%与95%降雨情景下设施单位体积雨水蓄渗、净化成本 |
Tab.4 Design rainfall of rainfall event capture ratio and runoff volume capture ratio in some Chinese cities表4 部分城市年降雨场次控制率与年径流总量控制率对应的设计降雨量范围 |
城市 | 降雨场次控制率/mm | 径流总量控制率/mm |
---|---|---|
长春 | 16.2~35.3 | 21.4~26.6 |
北京 | 23.1~51.3 | 22.8~33.6 |
郑州 | 20.4~47.0 | 23.1~34.3 |
武汉 | 23.6~55.1 | 24.5~43.3 |
上海 | 20.3~44.0 | 22.2~33.0 |
长沙 | 21.7~45.1 | 21.8~31.6 |
福州 | 22.7~48.5 | 24.1~35.7 |
南宁 | 23.2~51.4 | 23.5~40.4 |
乌鲁木齐 | 10.0~19.5 | 13.0~15.0 |
拉萨 | 12.7~21.4 | 12.3~14.7 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
[
|
[8] |
[
|
[9] |
[
|
[10] |
[
|
[11] |
[
|
[12] |
[
|
[13] |
[
|
[14] |
[
|
[15] |
[
|
[16] |
[
|
[17] |
中国建设造价工程信息网. 2016a. 城市住宅建安工程造价指标数据[EB/OL]. 2016-07-01[2017-04-19] .
[China Engineering Cost Network. 2016-07-01. Chengshi zhuzhai jianan gongcheng zaojia zhibiao shuju[EB/OL]. 2016-07-01[2017-04-19] .]
|
[18] |
中国建设造价工程信息网. 2016b. 建筑实物工程量人工成本信息表[EB/OL]. 2016-07-01[2017-04-19] .
[China Engineering Cost Network. 2016b. Jianzhu shiwu gongchengliang rengong chengben xinxibiao[EB/OL]. 2016-07-01[2017-04-19] .]
|
[19] |
[
|
[20] |
[
|
[21] |
[
|
[22] |
[
|
[23] |
[
|
[24] |
[
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
United States Environmental Protection Agency.2000. Low impact development (LID): A literature review[R]. EPA-841-B-00-005. Washington D C: Office of Water.
|
[32] |
|
/
〈 |
|
〉 |