生态与环境

陆地生态系统碳- 水耦合机制初探

展开
  • 1. 中国科学院生态系统网络观测与模拟重点实验室,中国科学院地理科学与资源研究所,北京100101;
    2. 中国科学院研究生院,北京100039
赵风华(1979-),男,博士生,主要从事陆地生态系统碳、水过程研究.E- mail:zhaofh.04b@igsnrr.ac.cn

收稿日期: 2007-10-01

  修回日期: 2007-10-01

  网络出版日期: 2008-01-25

基金资助

中国科学院知识创新工程重要方向项目(KZCX2- YW- 432)资助.

A Review on the Coupled Carbon and Water Cycles in the Ter r estr ial Ecosystems

Expand
  • 1. Key Laboratory of Ecosystem Network Observation and Modeling, the Center for Synthesis Research, Chinese Ecosystem Research Network Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China|
    2. Graduate University of Chinese Academy of Sciences, Beijing 100039, China

Received date: 2007-10-01

  Revised date: 2007-10-01

  Online published: 2008-01-25

摘要

陆地生态系统的碳循环和水循环是当前全球变化研究的热点。大量的研究已经表明两者之间具有密切的 耦合作用。但是目前对于两者的耦合关系和耦合机制还缺乏系统的分析和总结。本文在综合相关研究的基础上,对 陆地生态系统碳- 水耦合的基本过程和基本作用机制作了概括。我们认为陆地生态系统碳- 水耦合过程共包括土 壤- 植被节点、植被- 大气节点(气孔节点)、土壤- 大气节点和生化节点4 个碳- 水耦合节点。碳- 水间的生化反应、气 孔对光合- 蒸腾的共同控制和优化调控作用、生态系统对碳、水循环的同向驱动机制分别是陆地生态系统碳- 水耦 合的生物化学、生物物理学和生态学基础,共同构成了碳- 水耦合的基本作用机制。我们还用水分利用效率(WUE) 概念对碳- 水耦合过程中的碳/水耦合比例关系作了探讨。

本文引用格式

赵风华,于贵瑞 . 陆地生态系统碳- 水耦合机制初探[J]. 地理科学进展, 2008 , 27(1) : 32 -38 . DOI: 10.11820/dlkxjz.2008.01.005

Abstract

Carbon and water cycles absorbed much attention in the global change researches. There were many observations indicating that they were robustly coupled in the terrestrial ecosys-tems. Here we reviewed the correlations between carbon and water cycles from leaf to canopy and to larger scales. Moreover, we discussed the general mechanisms of the coupling relationships between carbon and water cycles. The chain between carbon and water cycles was analyzed into four links: soil- plant link, plant- atmosphere link (stomata link), soil- atmosphere link and biochemical link. The causes for the strong correlations between carbon and water could be generalized as three fundamental functions: 1) the chemosynthesis between carbon and water; 2) the stomatal controls on gas exchange and its optimal function; and 3) the common driving forces and similar controls for carbon and water cycles in the terrestrial ecosystems. Water use efficiency defined as the ratio of carbon assimilation to water use also was discussed as a suitable term indicating the quantity relationship between carbon and water.

参考文献


[1] Vorosmarty C J, Green P, Salisbury J, Lammers R B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science, 2000,289: 284~ 288.

[2] Treut L H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T, Prather M. Historical Overview of Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L (eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007, 95~111

[3] 于贵瑞, 王秋凤, 于振良. 陆地生态系统水- 碳耦合循环 与过程管理研究. 地球科学进展, 2004, 19 ( 5 ): 831~ 838.

[4] Yu G R, Wen X F, Sun X M, Tanner B D. Overview of ChinaFlux and evaluation of its eddy covariance measurement. Agriculture and Forest Meteorology, 2006, 137: 125~137.

[5] 耿元波, 董云社, 孟维奇. 陆地碳循环研究进展. 地理科 学进展, 2000, 19(4): 297~306.

[6] 于贵瑞, 王秋凤. 我国水循环的生物学过程研究进展. 地 理科学进展, 2003, 22(2): 111~117.

[7] 胡中民, 于贵瑞, 樊江文等. 干旱对陆地生态系统水碳 进展的影响研究进展. 地理科学进展, 2006, 25 (6): 12~ 20.

[8] Zhao F H, Yu G R, Li S G, Ren C Y, Sun X M, Mi N, Li J, Ouyang Z. Canopy water use efficiency of winter wheat in the North China Plain. Agricultural Water Management, 2007, 93: 99~108.

[9] 黄占斌, 山仑.不同供水下作物水分利用效率和光合速率 日变化的时段性及其机理研究. 华北农学报, 1999, 14 (1): 47~52.

[10] 李卫民, 周凌云. 水肥(氮) 对小麦生理生态的影响(Ⅰ) 水肥(氮) 条件对小麦光合蒸腾与水分利用的影响. 土壤 通报, 2004, 35(2): 136~142.

[11] 赵风华, 陈阜. 北京地区引种菊苣在不同水分条件下 光合与蒸腾特性初探. 华北农学报, 2005, 20 ( 2 ): 63~ 65.

[12] Cowan I R, Farquhar G D. Stomatal function in relation to leaf metabolism and environment. In: Society for Experimental Biology Symposium, Integration of Activity in the Higher Plant. Jennings D H(eds.), Society for Experimental Biology, Cambridge, 1977, 31: 471~505.

[13] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317~345.

[14] Williams W E. Optimal water- use efficiency in a California shrub. Plant, Cell and Environment, 1983, 6: 145 ~ 151.

[15] Hall A E, Schulze E D. Stomatal response to environment and possible interrelation between stomatal effects on transpiration and CO2 assimilation. Plant, Cell and Environment, 1980, 3: 467~474.

[16] 张永强, 沈彦俊, 刘昌明等. 华北平原典型农田水、热 与CO2 通量的测定. 地理学报, 2002, 57(3): 333~342.

[17] 朱治林, 孙晓敏, 张仁华等. 作物群体CO2 通量和水分 利用效率的快速测定. 应用生态学报, 2004, 15 (9) : 1684~1686.

[18] Song X, Yu G R, Liu Y F, Sun X M, Lin Y M, Wen X F. Seasonal variations and environmental control of water use efficiency in subtropical plantation. Science in China: Series D, 2006, 49(supp.Ⅱ): 110~118.

[19] Steduto P, Albrizio R. Resource use efficiency of field - grown sunflower, sorghum, wheat and chickpea. II. Water use efficiency and comparison with radiation use efficiency. Agriculture and Forest Meteorology, 2005, 130: 269~ 281.

[20] Steduto P, Hsiao T C. On the conservative behavior of biomass water productivity. Irrigation Science, 2007, 25: 189~207.

[21] Yu G R, Wang Q F, Zhuang J. Modeling the water use efficiency of soybean and maize plants under environmental stresses: application of a synthetic model of photosynthesis - transpiration based on stomatal behavior. Journal of Plant Physiology, 2004, 161: 303~318.

[22] Yu G R, Song X, Wang Q F, Liu Y F, Guan D X, Yan J H, Sun X M, Zhang L M, Wen X F. Water- use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist, 2007, (in press).

[23] Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424: 901~908.

[24] Law B E, Falge E, Gu L, Baldocchi D D, etc. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agriculture and Forest Meteorology, 2002,113: 97~120.

[25] 周广胜, 郑元润, 陈四清等. 自然植被净第一线生产力 模型及其应用. 林业科学, 1998, 34(5): 2~11.

[26] Beer C, Reichstein M, Ciais P, Farquhar G D, Papale D. Mean annual GPP of Europe derived from its water balance. Geophysical Research Letters, 2007, 34: L05401.

[27] Wong S C, Cowan I R, Farquhar G D. Stomatal conductance correlates with photosynthesis capacity. Nature, 1979, 282: 424~426.

[28] Morison J I L. Intercellular CO2 concentration and stomatal response to CO2. In: Zeiger E, Farquhar G D, Cowan I R (eds.) Stomatal function. Stanford University Press, Stanford, 1987, 229~251.

[29] Hsiao T C. Effects of drought and elevated CO2 on plant water use efficiency and productivity. In: Jackson M B, Black C R (eds.) Interactive stressed on plants in a changing climate. NATO ASI series, I (16). Berlin: Springer - Verlag, 1993, 435~465.

[30] Xu L K, Hsiao T C. Predicted versus measured photosynthetic water- use efficiency of crop stands under dynamically changing field environments. Journal of Experimental Botany, 2004, 55(407): 199~206.

[31] Albrizo R, Steduto P. Photosynthesis, respiration and conservative carbon use efficiency of four field grown crops. Agriculture and Forest Meteorology, 2003, 116: 19~36.

[32] Liu C M, Zhang Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large - scale weighing lysimeter and microlysimeter. Agriculture and Forest Meteorology, 2002, 111: 109~120.

[33] Testi L, Orgaz F, Villalobos F. Carbon exchange and water use efficiency of a growing, irrigated olive orchard. Environmental and Experimental Botany, 2007(in press).

文章导航

/