生态系统与气候变化

毛乌素沙地蒸散量的遥感研究——以内蒙古乌审旗为例

展开
  • 1. 北京师范大学遥感科学国家重点实验室, 地理学与遥感科学学院, 北京100875|
    2. 中国林业科学研究院林业研究所, 北京100091|
    3. 内蒙古乌审旗纳林河乡林场, 乌审旗017300
周会珍(1981-), 女, 硕士, 主要从事地表通量的遥感监测研究.

收稿日期: 2006-03-01

  修回日期: 2006-07-01

  网络出版日期: 2006-07-25

基金资助

国家高技术研究发展计划( 863 计划) "西北半干旱生态植被建设区节水综合技术体系集成与示 范"项目( 2002AA2Z4271) 资助.

Study on Estimation of Regional Evapotr anspir ation by Remote Sensing in the Mu Us Sandland ———A Case Study of Wushen County in Inner Mongolia

Expand
  • 1. State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing 100875, China|
    2. Research Institute of Forestry, CAF, Beijing 10091, China|
    3. Nalinhe Town forestry centre of Wushen County in Inner Mongolia, Wushen County 017300, China

Received date: 2006-03-01

  Revised date: 2006-07-01

  Online published: 2006-07-25

摘要

地表蒸散量的准确估算对全球气候变化研究以及水资源的科学管理意义重大。本文以毛乌 素沙地腹地———内蒙古乌审旗为例, 应用基于互补相关原理的平流- 干旱模型, 结合1km 分辨率 的NOAA/AVHRR、MODIS 反照率资料和气象资料, 对乌审旗1981~2003 年的地表蒸散量进行了 估算, 并对其时空分布进行了分析。结果表明: (1) 乌审旗多年平均年蒸散量为252mm, 变化在 200~310mm 之间, 从西北向东南递增; 多年平均年蒸散量的相对变率在10%~24%之间, 从西北 向东南递减; 逐年蒸散量分布趋势基本一致, 都是从西部地区向东部地区递增。(2) 以2002 年为 例, 按照土地利用/土地覆盖类型划分, 蒸散量最大的是水体, 耕地次之, 再次是草地和林地, 沙地 最小。(3) 蒸散量年际变化大, 最大年份在300mm 以上, 最小年份在200mm 左右; 从年内变化看, 蒸散量呈“单峰”正态分布, 一年内蒸散量主要集中在6~9 月份。(4) 通过误差分析可以看出, 乌审 旗蒸散量的模型估算值比实际测量值偏低, 大约低9%左右。

本文引用格式

周会珍,刘绍民,于小飞,张劲松,周择福,邬俊义 . 毛乌素沙地蒸散量的遥感研究——以内蒙古乌审旗为例[J]. 地理科学进展, 2006 , 25(4) : 79 -87 . DOI: 10.11820/dlkxjz.2006.04.009

Abstract

Accurate estimation of surface evaporatranspiration (ET) is important in the study of global climatic change, scientific management of water resources. In this paper, the evapotranspiration from 1981 to 2003 in Wushen County, located in the Mu Us Sandland, was estimated by using Advection - Aridity Model based on the complementary relationship hypothesis with 1km resolution reflectance data of NOAA/AVHRR and MODIS and meteorology data. The temporal and spatial distribution of ET was analyzed. The results showed: (1) The annual average of ET of Wushen County is 252 mm. Spatially, it increases from northwest to southeast. The multiyear relative variation of ET in Wushen County is from 10% to 24%, larger in northwestern and southeastern parts and smaller in eastern and southern places. Seen from the yearly spatial distribution of the ET, there is the same trend that ET increases from west to east. (2) Ordered in land cover and land use in 2002, ET decreases in following sequence: water body, crop field, grassland, shrub, forestland and sand land. (3) Interannual change of ET in Wushen County is large while the maximum value is up to 300mm and the minimum value is only 200 mm. The monthly distribution of ET takes a 'bell'shape, with peak in about July to September.

参考文献


[1] 姚洪林, 魏成泰, 廖茂彩. 内蒙古毛乌素沙地开发整治研究中心概况. 毛乌素沙地开发整治研究中心研究文集( 1) .呼 和浩特: 内蒙古大学出版社, 1992, 1~3.

[2] 铃木雅一. 毛乌素沙地的地下水变化和蒸散量. 毛乌素沙地开发整治研究中心研究文集( 1) . 呼和浩特: 内蒙古大学 出版社, 1992, 120~126.

[3] 《乌审旗志》编纂委员会. 乌审旗志. 呼和浩特: 内蒙古人民出版社, 2001, 1~89.

[4] 李新, 程国栋, 卢玲. 空间内插方法比较. 地球科学进展, 2000, 15(3): 260~264.

[5] 封志明, 杨艳昭, 丁晓强等. 气象要素空间插值方法优化. 地理研究, 2004, 23(3): 357~364.

[6] Valiente J A, Nunez M, Lopez- Baeza E, J F Mereno. Narrow- band to broad- band conversion for Meteosat- visible channel and broad- band albedo using both AVHRR- 1 and –2 channels. Int. J. Remote Sens. , 1995, 16(6): 1147~1166.

[7] The Goddard Distributed Active Archive Centre, NOAA/NASA Pathfinder AVHRR Land Data Set, B- 8.

[8] Buchet R J. Evapotranspiration reele et potentielle, signification climatique. Publ., General assembly Berkeley, Int. Ass. Sci. Hydrol., Gentbrugge, Belgium, 1963, 62:134~142.

[9] Brutsaert W, Stricker H. An advection- aridity approach to estimate actual regional evapotranspiration. Water Resources Research, 1979,15(2): 443~449.

[10] 左大康, 周允华, 朱志辉等. 地球表层辐射研究. 北京: 科学出版社, 1991, 232~252.

[11] 曾燕. 黄河流域实际蒸散分布式模型研究
[博士论文]. 北京: 中国科学院地理科学与资源研究所, 2004.

[12] Allen R G, Pereira L S, Raes D, smith M. Crop Evapotranspiration. FAO Irrigation and Drainage Paper 24, Rome, 1998.

[13] Prere M, Popov G F. Agrometeorological Crop Monitoring and Forecasting. FAO Plant Production and Protection, Rome, 1979.

[14] Priestley C H B. and R J Taylor. On the assessment of surface heat flux and evaporation using large- scale Parameters. Monthly Weather Review, 1972,100(2): 81~92.

[15] Davies J A, Allen C D. Equilibrium, potential and actual evaporation from cropped surfaces in Southern Ontario. Journal of applied meteorology, 1973, 12: 649~657.

[16] 刘绍民, 孙睿, 孙中平等. 基于互补相关原理的区域蒸散量估算模型比较. 地理学报, 2004, 59( 3) : 331~340.

[17] Shaomin Liu, Rui Sun, Zhongping Sun, etal. Evaluation of Three Complementary Relationship Approaches for Evapotranspiration over The Yellow River Basin, Hydrological Processes, 2006, 20( 11) : 2347~2361.

[18] Yongqiang Zhang, Changming Liu etal. Energy fluxes and the Priestley- Taylor parameter over winter wheat and maize in the North China Plain, Hydrological Processes, 2004, 18: 2235~2246.

[19] 铃木雅一. 毛乌素沙地的地下水变化和蒸散量, 毛乌素沙地开发整治研究文集( 1) . 呼和浩特: 内蒙古大学出版社, 1992, 120~126.

文章导航

/