生态环境与灾害管理

湖冰遥感监测方法综述

展开
  • 1. 中国科学院青藏高原研究所,青藏高原环境变化与地表过程重点实验室, 北京100085|
    2. 中国科学院研究生院, 北京100049|
    3. 中国科学院遥感应用研究所, 遥感科学国家重点实验室, 北京100101
魏秋方(1983-),女,湖北随州人,自然地理学专业在读硕士,研究方向:资源环境遥感及其应用。E-mail:wei_qiufang@itpcas.ac.cn.

收稿日期: 2009-09-01

  修回日期: 2010-01-01

  网络出版日期: 2010-07-25

基金资助

国家自然科学基金项目(40601056, 40121101); 国家重点基础研究发展计划项目(2009CB723901); 公益性行业(气象)科研专项(GYHY(QX)2007-6-18); 中国科学院遥感应用研究所遥感科学国家重点实验室开放基金项目; 中国科学院青藏高原研究所环境变化与地表过程实验室领域前沿项目。

Review of Lake Ice Monitoring by Remote Sensing

Expand
  • 1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS,Beijing 100085, China|
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China|
    3. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, CAS, Beijing 100101, China

Received date: 2009-09-01

  Revised date: 2010-01-01

  Online published: 2010-07-25

摘要

本文综述了多光谱和微波数据监测湖冰冻结、消融及冰厚的方法,并比较了各种方法的优缺点,最后运用MODIS和AMSR-E监测了纳木错2007/2008冬半年冰情。湖冰监测方法主要有阈值法和指数法。阈值法是根据冰水反射率、 温度、后向散射系数等特征因子的不同直接区分冰水,精度较高,误差在5天以内。指数法主要是根据冰水波谱特性和极化特性,做波段运算后间接区分冰水。冰厚监测常采用经验公式法,用实测数据与反射率、极化比、亮温等建立关系式反演整个湖泊冰厚,此方法适用于特定的某个湖泊。冰厚识别是湖冰监测的难点,主动微波比多光谱数据更适合监测冰厚。从数据本身来讲,热红外、被动微波等高时间分辨率数据比可见光、主动微波等高空间分辨率影像更适合监测大面积湖泊冰情。基于多源遥感数据,发展自动反演算法将是湖冰遥感监测发展趋势之一。

本文引用格式

魏秋方,叶庆华 . 湖冰遥感监测方法综述[J]. 地理科学进展, 2010 , 29(7) : 803 -810 . DOI: 10.11820/dlkxjz.2010.07.005

Abstract

This paper summarized and compared several methods of monitoring lake ice freezing-on and breaking up and ice thickness by multi-spectral and microwave remote sensing data. Finally, we monitored the lake ice in Nam Co by two methods during the winter half year of 2007/2008. Generally, researchers usually take threshold and index methods to monitor lake ice. According to the differences between ice and water, such as their reflectivity, temperature and backward scattering coefficients, the threshold model can distinguish ice and water directly. It has a high precision with an error of less than 5 days. While the index method recognizes ice and water indirectly by calculations based on spectral and polarization characteristics of ice and water. Additionally, researchers use empirical correlations between ice thickness and its reflectivity, polarization, temperature brightness or other properties to invert thickness. Ice thickness recognition is difficult in lake ice monitoring. Active microwave data is more suitable for ice thickness monitoring than multi-spectral data. Data with high time resolution such as thermal infrared and passive microwave data is more suitable for monitoring lake ice with large areas than the data with high spatial resolutions such as visible, near infrared and active microwave data. Based on multi-source remote sensing data, automatic inversion algorithm will be one of the development trends of lake ice monitoring by remote sensing.

参考文献


[1] 姚檀栋. 冰芯研究与全球变化. 中国科学院院刊, 1996 (5): 368-371.

[2] 陈拓, 秦大河, 李江风, 等. 从树轮纤维素δ13C 序列看树木生长对大气CO2浓度变化的响应. 冰川冻土, 2001, 23 (1): 41-45.

[3] 王君波, 朱立平. 青藏高原湖泊沉积与环境演变研究:现状与展望. 地理科学进展, 2005, 24(5): 1-12.

[4] Kouraev A V, Semovski S V, Shimaraev M N, et al. Observations of Lake Baikal ice from satellite altimetry and radiometry. Remote Sensing of Environment, 2007, 108(3): 240-253.

[5] Marszelewski W, Skowron R. Ice cover as an indicator of winter air temperature changes: Case study of the Polish Lowland lakes. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 2006, 51(2): 336-349.

[6] Gould M, Jeffries M. Temperature variations in lake ice in central Alaska, USA. Annals of Glaciology, 2005, 40(1):89-94.

[7] Johnson S L, Stefan H G. Indicators of climate warming in Minnesota: Lake ice covers and snowmelt runoff. Climate Change, 2006, 75(4): 421-453.

[8] Todd M C, Mackay A W. Large-scale climate controls on Lake Baikal ice cover. Journal of Climate, 2003, 16(19): 3186-3199.

[9] Ghanbari R N, Bravo H R, Magnuson J J, et al. Coherence between lake ice cover, local climate and teleconnections. Journal of Hydrology, 2009, 374(3/4): 282-293.

[10] Wynne R H, Lillesand T M. Satellite observation of lake ice as a climate indicator: Initial results from statewide monitoring in Wisconsin. Photogrammetric Engineering & Remote Sensing, 1993, 59(6): 1023-1031.

[11] Rees W G. Remote Sensing of Snow and Ice. Boca Raton: CRC Press Taylor & Francis Group, 2006: 183-188.

[12] Bryan M L, Larson R W. The study of fresh-water lake ice using multiplexed imaging radar. Journal of Glaciology, 1975, 14(72): 445-457.

[13] 陈贤章, 王光宇, 李文君, 等. 青藏高原湖冰及其遥感监测. 冰川冻土, 1995, 17(3): 241-246.

[14] 殷青军, 杨英莲. 基于EOS/MODIS数据的青海湖遥感监测. 湖泊科学, 2005, 17(4): 356-360.

[15] 车涛, 李新, 晋锐. 利用被动微波遥感低频亮温数据监测青海湖封冻与解冻期. 科学通报, 2009, 54(6): 787-791.

[16] Duguay C R, Flato G M, Jeffries M O, et al. Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations. Hydrological Processes, 2003, 17(17): 3465-3483.

[17] Jeffries M O, Morris K, Duguay C R. Lake ice growth and decay in central Alaska, USA: Observations and computer simulations compared. Annals of Glaciology, 2005, 40(1): 195-199.

[18] Menard P, Duguay C R, Flato G M, et al. Simulation of ice phenology on Great Slave Lake, Northwest Territories, Canada. Hydrological Processes, 2002, 16(18): 3691-3706.

[19] Morris K, Jeffries M, Duguay C. Model simulation of the effects of climate variability and change on lake ice in central Alaska, USA. Annals of Glaciology, 2005, 40(1): 113-118.

[20] Reid T, Crout N. A thermodynamic model of freshwater Antarctic lake ice. Ecological modeling, 2008, 210(3): 231-241.

[21] Nonaka T, Matsunaga T, Hoyano A. Estimating ice breakup dates on Eurasian lakes using water temperature trends and threshold surface temperatures derived from MODIS data. International Journal of Remote Sensing, 2007, 28(10): 2163 -2179.

[22] Latifovic R, Pouliot D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sensing of Environment, 2007, 106(4): 492-507.

[23] Howell S E L, Brown L C, Kang K K, et al. Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuickSCAT: 2000-2006. Remote Sensing of Environment, 2009, 113(4): 816-834.

[24] 吴龙涛, 吴辉碇, 孙兰涛, 等. MODIS渤海海冰遥感资料反演. 中国海洋大学学报, 2006, 36(2): 173-179.

[25] French N, Savage S, Shuchman R, et al. Remote sensing of frozen lakes on the north slope of Alaska. IEEE International Geoscience and Remote Sensing Symposium, 2004(1-7): 3008-3011.

[26] Nakamura K, Wakabayashi H, Uto S, et al. Observation of sea-ice thickness using ENVISAT data From Lutzow-Holm Bay, East Antarctica. IEEE Geoscicence and Remote Sensing Letters, 2009, 6(2): 277-281.

[27] Hvidegaard S M, Forsberg R. Sea-ice thickness from airborne laser altimetry over the Arctic Ocean north of Greenland. Geophysical Research Letters, 2002, 29(20).1952,doi:10.1029/2001GL014474

[28] Kwok R, Zwally H J, Yi D. ICESat observations of Arctic sea ice: A first look. Geophysical Research Letters, 2004, 31(16).L16401,doi:10.1029/2004GL020309

[29] Kwok R, Cunningham G F. ICESat over Arctic sea ice: Estimation of snow depth and ice thickness. Journal Geophysical Research, 2008, 113(C8).C08010,doi:1029/2008JC004753

[30] Laxon S, Peacock N, Smith D. High interannual variability of sea ice thickness in the Arctic region. Nature, 2003, 425(6961): 947-950.

[31] Hall D K, Foster J L, Chang A T L, et al. Freshwater ice thickness observations using passive microwave sensors. IEEE Transactions on Geoscience and Remote Sensing, 1981, 19(4):189-193.

[32] Martin S, Drucker R, Kwok R, et al. Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from SSM/I data, 1990-2001. Journal Geophysical Research, 2004, 109(C10).

[33] Martin S, Drucker R, Kwok R, et al. Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E. Geophysical Research Letters, 2005, 32(5).

[34] White D M, Prokein P, Chambers M K, et al. Use of aynthetic aperture radar for selecting Alaska-lakes for winter water use. Journal of the American Water Resources Association, 2008, 44(2): 276-284.

[35] 赵玉金, 赵红. 利用卫星遥感数据监测莱州湾海冰. 山东气象, 2008, 28(114): 32-34.

[36] Gatto L W. Monitoring river ice with Landsat images. Remote Sensing of Environment, 1990, 32(1): 1-16.

[37] Bourgault D. Shore-based photogrammetry of river ice. Canadian Journal of Civil Engineering, 2008,35(1): 80-86.

[38] Vuyovich C M, Daly S F, Gagnon J J, et al. Monitoring river ice conditions using web-Based cameras. Journal of Cold Regions Engineering, 2009, 23(1): 1-17.

[39] 杨中华, 陈林, 杨卫坤, 等. 中巴地球资源一号02星在黄河凌汛监测中的应用. 水利水电技术, 2006, 37(8): 80-83.

[40] 鄢俊洁, 刘良明, 马浩录, 等. MODIS数据在黄河凌汛监测中的应用. 武汉大学学报: 信息科学版, 2004, 29(8): 679-682.

[41] 田国良. 热红外遥感. 北京: 电子工业出版社, 2006: 188-209.

[42] 张辛, 鄂栋臣. MODIS海冰数据监测中山站附近海冰的季节性变化. 极地研究, 2008, 20(4): 346-354.

[43] Leshkevich G A, Nghiem S V, Kwok R. Monitoring Great Lakes ice cover with satellite synthetic aperture radar. IEEE International Geoscience and Remote Sensing Symposium, 2000, 2: 478-480.

[44] Kouraev A V, Kostianoy A G, Lebedev S A. Ice cover and sea level of the Aral Sea from satellite altimetry and radiometry (1992-2006). Journal of Marine Systems, 2009, 76(3): 272-286.

[45] Kouraev A V, Papa F, Mognard N M, et al. Sea ice cover in the Caspian and Aral Seas from historical and satellite data. Journal of Marine Systems, 2004, 47(1-4): 89-100.

[46] Cavalier D J, Gloersen P, Campbell W J. Determination of sea ice parameters with the NIMBUS 7 SMMR. Journal of Geophysical Research, 1984, 89(ND4): 5355-5369.

[47] Cavalieri D J, Crawford J P, Drinkwater M R, et al. Aircraft active and passive microwave validation of sea ice concentration from the defense meteorological satellite program special sensor microwave imager. Journal of Geophysical Research, 1991, 96(C12): 21989-22008.

[48] 曹梅盛, 李新, 陈贤章, 等. 冰冻圈遥感. 北京: 科学出版社, 2006: 171-182.

[49] 谢锋. 高时间分辨率遥感影像中渤海海冰信息的提取研究. 北京:北京师范大学, 2006.

[50] Leconte R, Daly S, Gauthier Y, et al. A controlled experiment to retrieve freshwater ice characteristics from an FM-CW radar system. Cold Regions Science and Technology, 2009, 55(2):212-220.

[51] 鲁安新, 姚檀栋, 王丽红, 等. 青藏高原典型冰川和湖泊变化遥感研究. 冰川冻土, 2005, 27 (6): 783-792.

[52] 李明慧, 康世昌,朱立平, 等. 西藏纳木错沉积物中单水方解石的发现及成因分析. 矿物岩石, 2008, 28(1): 1-7.

[53] 朱大岗, 孟宪刚, 赵希涛, 等. 西藏纳木错地区第四纪环境演变. 北京: 地质出版社, 2004: 1-93.

文章导航

/