生态与环境

陆地生态系统土壤呼吸、氮矿化对气候变暖的响应

展开
  • 1. 中国科学院地理科学与资源研究所, 北京100101|
    2. 北京林业大学省部共建森林培育与保护教育部重点实验室, 北京100083
同小娟(1975-)|女|陕西白水人|讲师|博士生|主要从事全球变化与陆地生态系统碳循环的研究。 E-mail: tongxjsxbs@sina.com

收稿日期: 2005-02-01

  修回日期: 2005-06-01

  网络出版日期: 2005-07-25

基金资助

国家杰出青年自然科学基金(40425103);中科院百人计划;国家重点基础研究发展规划项目(G2002CB412507)。

The Responses of Soil Respiration and Nitrogen Mineralization to Global Warming in Terrestrial Ecosystems

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China|
    2. The Key Laboratory for Silviculture and Conservation of Ministry of Education, BFU, Beijing 100083, China

Received date: 2005-02-01

  Revised date: 2005-06-01

  Online published: 2005-07-25

摘要

土壤呼吸和氮矿化对气候变暖的响应是影响陆地生态系统碳收支的主要因素之一,也是当前全球变化研究的主要内容之一。短期内温度升高能明显提高土壤呼吸速率,随着温度的进一步升高和升温时间的延长,土壤呼吸速率对温度升高的敏感性可能逐渐降低。由于土壤呼吸的温度敏感性与土壤水分含量、气候、植被、凋落物等多种因素有关,并随时间和空间的变化而变化,因此,用一个固定的Q10(土壤呼吸的温度敏感系数)来计算土壤呼吸对温度升高响应的量,会给研究结果带来很大的不确定性。生态系统对气候变暖的响应除了直接的反应外,还具有复杂的适应性。尽管模拟研究表明未来气候变暖将使土壤呼吸增加,但是有关土壤呼吸对气候变化适应性的试验数据比较少,对未来气候变化背景下土壤呼吸的模拟仍有很大的不确定性。气候变暖将促进土壤氮素的矿化速率,其影响程度的强弱不仅与温度有关,而且与土壤基质的质量与数量、土壤水分、升温持续的时间等有关,这使目前有关研究结果出现了很大的不确定性。针对上述研究中存在的问题,今后应统一土壤呼吸的测定方法,区分土壤呼吸各组分对温度升高的响应,在研究土壤呼吸和氮矿化对温度升高的响应时结合考虑其它因素能在一定程度上减少研究结果的不确定性。

本文引用格式

同小娟, 陶 波,曹明奎 . 陆地生态系统土壤呼吸、氮矿化对气候变暖的响应[J]. 地理科学进展, 2005 , 24(4) : 84 -96 . DOI: 10.11820/dlkxjz.2005.04.010

Abstract

Study on the responses of soil respiration and nitrogen mineralization to global warming is very important to understand the balance of the terrestrial carbon budget. Soil respiration will increase as temperature increase in short-term. However, it would have no sensitivity to warming or acclimation in long-term. The temperature sensitivity of soil respiration is heterogeneous temporally and spatially since it is controlled by environmental factors such as soil water content, climate, vegetation, litters and so on. Therefore, many uncertainties will be unavoidable when a fixed Q10 is used to calculate the variations of soil respiration. The responses of terrestrial ecosystems to warming have complex acclimations besides direct reactions. Although the results of modeling suggest that soil respiration would increase due to global warming, big uncertainties still exists in modeling soil respiration due to lacking of measurements about acclimation of soil respiration to warming. Soil nitrogen mineralization rates are promoted by the global warming. The extents of effects are related to not only temperature, but also soil substrate quality and quantity, soil water, the duration time of increasing temperature and so on. Due to the integrated effects of these factors, many uncertainties appear. The problems above will be solved by use of uniform methods, distinguishing of the responses of different components of soil respiration to warming, and consideration of other factors such as both increases and decreases in the quantity and distribution of region precipitation, increased N deposition and elevated atmospheric CO2 concentration.

参考文献


[1] ?gren G J., McMurtrie R E,Parton W J,Paster J,Shugart H H. State-of-the-art models of production-decomposition linkages in conifer and grassland ecosystems. Ecol. Appl. 1991,1:118~138.

[2] Robinson C H,Wookey P A,Parsons A N et al. Responses of plant litter decomposition and nitrogen mineralization to simu lated environmental change in a high arctic polar semi-desert and a sub-arctic dwarf shrub heath. Oikos, 1995,74:503~512.

[3] Lal R,Kimble J,Levine E,Stewart B A. Soil management and the greenhouse effect. CRC,London. 1995.

[4] Rastter E B,Mckane R B,Shaver G R,Nadelhoffer K J,Giblin A E. Analysis of CO2, temperature, and moisture effects on carbon storage in Alaskan arctic tundra using a general ecosystem model. In: Oechel W C, Callaghan T, Gilmanov T, Holten J I, Maxwell B, Molau U, et al.,(eds). Global change and arctic terrestrial ecosystems,. Springer, Berlin Heidelberg New York, 1997, pp,437~451.

[5] IPCC.Climate change 1994: Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios, Houghton JT, Meira Filho LG, Bruce J, Hoesung Lee, Callander BA, Harris N and Maskell K(eds). Cambridge University Press, Cambridge,UK,1995.

[6] Schimel D S,Braswell B H,Holland E A,Mckeown R,Ojima D S, et al. Climate, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemistry Cycles,1994, 8:279~293.

[7] McGuire A D,Melillo J M,Kicklighter D W,Joyce L A. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates . J. Biogeog. 1995,22:785~796.

[8] Raich J W,Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate . Tellus, 1992,44:81~89.

[9] Peterjohn W T,Melillo J M,Steudler P A,Newkirk K M,Bowles F P,Aber J D. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures . Ecological Applications, 1994,4:617~625.

[10] Christensen T R,Michelsen A,Jonasson S,Schmidt I K. Carbon dioxide and methane exchange of a subarctic heath in response to climate change related environmental manipulations . Oikos, 1997,79:34~44.

[11] Rustard L E,Fernandez I J. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA . Global Change Biology, 1998,4:597~605.

[12] Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage . Soil Biology & Biogeochemistry, 1995, 27:753~760.

[13] IPCC, 2001. In: Hunghton, J.T., Ding,Y, Griggs, D. J., Noguer, M., Vandeer Linden, P. J., Dai, X., Maskell, K., Johnson, C.A.(Eds.), Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge ,UK.

[14] Parton W J,Scurlock J M O,Ojima D S,Schimel D S,Hall D O, SCOPEGRAM group members Impact of climate change on grassland production and soil carbon worldwide . Global Change Biology, 1995,1:13~22.

[15] Mertens S,Nijs I,Heuer M et al., Influence of high temperature on end-of-season tundra CO2 exchange. Ecosystems, 2001,4:226~236.

[16] Sj?觟gersten S,Wookey P A. Climate and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland . Soil biology & Biogeochemistry, 2002,34:1633~1646.

[17] Bergner B,Johnstone J and Treseder K K. Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest. Global Change Biology, 2004, 10:1996~2004.

[18] Niinist?觟 A M, Silvola J and Kello? A. Soil CO2 efflux in a boreal pine under atmospheric CO2 enrichment and air warming . Global Change Biology, 2004, 10:1363~1376.

[19] McHale P J, Mitchell M J, Bowles PF. Soil warming in a northern hardwood forest: trace gas fluxes and leaf litter decomposition . Can. J. For Res. 1998,28:1365~1372.

[20] Rustard L E,Campbell J L,Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001,126:543~562.

[21] Jones M H, Fahnestock J T,Walker D A, et al. Carbon dioxide fluxes in moist and dry arctic tundra during the snow-free season: response to increase in summer temperature and winter snow accumulation. Arctic Alp. Res. ,1998, 30(4):373~380.

[22] Foster D R,Aber J D,Melillo,et al. Forest response to disturbance and anthropogenic stress . Bioscience, 1997, 47:437~445.

[23] Saleska S,Harte J,Torn M. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow . Global Change Biology, 1999, 5:125~141.

[24] Fahnestock J T,Jones M H,Brooks F D,Walker D A,Welker J M. Winter and early spring CO2 flux from tundra communities of northern Alaska . Journal Geophysical Research, 1998,102(D22):29,925-29,931.

[25] Jones M H,Fahnestock J T,Welker J M. Early and late winter CO2 efflux from arctic in the Kuparuk River watershed Alaska . Arct Antarct Alp Res, 1999,31:187~190.

[26] Melillo J M,Steudler P A,Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system . Science, 2002, 298: 2173~2176.

[27] Grace J,Rayment M. Respiration in the balance . Nature, 2000,404:819.

[28] Davidson E A,Trubore S E,Amundson R. Biogeochemistry: Soil warming and organic carbon content . Nature, 2000, 408:789.

[29] Davidson, E.A., Belk, E., Boone, R.D. Soil water content and temperature as independent or on founded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 1998, 4:217~227.

[30] Buchmann, N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry, 2000, 32:1625~1635.

[31] Simmons, J.A., Fernandez, I.J., Briggs, R.D., Delaney, M.T. Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA . For. Ecol. Manag. 1996,84:81~95.

[32] Kirschbaum, M.U.F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 2000, 48: 21~51.

[33] Nadelhoffer K J,Giblin A E,Shaver G R,Linkins A E. Microbial processes and plant nutrient availability in arctic soils. In: Chapin Ⅲ F S,Jeffries R L,Reynolds J F,Shaver G R,Svoboda J(eds.), Arctic Ecosystems in a Changing Climate. An Ecophysiological Perspective. Academic Press,San Diego, 1992, pp.281~300.

[34] Rayment M B,Jarvis P G. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology and Biochemistry, 2000,32:35~45.

[35] Drewitt G B,Black T A,Nesic Z et al. Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agricultural and Forest Meteorology, 2002,110:229~317.

[36] Luo Y,Wan S,Hui D,Wallace L L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 2001,413:622~625.

[37] Xu M,Qi Y. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemistry cycles. 2001, 13(3):687~696.

[38] Andrews J A, Matamala R, Westover K M, et al. Temperature effects on the diversity of soil heterotrophs and the δ13C of soil-respired CO2. Soil Biology and Biochemistry, 2000, 32:699~706.

[39] Janssens I A and Pilegaard K. Large seasonal changes in Q10 of soil respiration in a beech forest . Global Change Biology, 2003, 9:911~918.

[40] Reichstein, M., Bednorz, F., Broll, G., K?覿tterer, T. Temperature dependence of carbon mineralization: conclusions from a long-term incubation of subalpine soil samples . Soil Biology & Biochemistry, 2000, 32:947~958.

[41] Heimann M., Keeling C.D., Tucker C.J. A three-dimensional model of atmospheric CO2 transport based on observed winds: 3. Seasonal cycle and synoptic timescale variations. In: Peterson, D.H., (Ed.), Aspect of Climatic variability in the Pacific and the Western Americas, Geophys. Monogr., no 55, American Geophysical Union,Washington D.C., 1989, pp. 277~303.

[42] Raich, J.W., Rastetter, E.B., Melillo, J.M., Kicklighter, D.W.,Steudler, P.A., Peterson, B.J., Grace, A.L., Moore, B. III,V?觟r?觟smarty, C.J. Potential net primary productivity in South America: application of a global model . Ecological Applications,1991,1: 399~429.

[43] Running, S.W., Hunt, E.R. Generalization of a forest ecosystem process model for other biomes, BIOMEBGC,and an application for global-scale models. In: Ehleringer,J.R., Field, C. (Eds.), Scaling Processes Between Leaf and Landscape Levels. Academic Press, Orlando, 1993,141~158.

[44] Schimel, D., Melillo J., Tian, H., McGuire, A.D., Kicklighter, D., Kittel, K., Rosenbloom, N., Running, S., Thornton,P., Ojima, D., Parton, W., Kelly, R., Sykes, M., Neilson,R., Rizzo, B. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 2000, 287:2004~2006.

[45] Boken W,Xu Y J,Brumme R,et al. A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: Drought and rewetting effects . Soil Science Society of America Journal, 1999, 63:1848~1855.

[46] D?觟rr H,Münnich K O. Annual variation in soil respiration in selected areas of the temperate zone. Tellus, 1987, 39B: 114~121.

[47] Boone R D,Nadelhoffer K J,Canary J D,et al. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 1998, 396,570~572.

[48] Gordon A M,Schlenter R E,Van Cleve K. Seasonal patterns of soil respiration and CO2 evolution following harvesting in the white spruce forests of interior Alaska . Can J For Res, 1987, 17:304~310.

[49] 牟守国. 温带阔叶林、针叶林和针阔混交林土壤呼吸的比较研究. 土壤学报, 2004, 41(4):564~570.

[50] Kang S,Doh S Lee D,et al. Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slope, Korea . Global Change Biology,2003,9:1427~1437.

[51] 王 淼, 姬兰柱, 李秋荣, 刘延秋. 土壤温度和水分对长白山不同森林类型土壤呼吸的影响. 应用生态学报, 2003,14(8):1234~1238.

[52] 蒋高明, 黄银晓. 北京山区辽东栎林土壤释放CO2的模拟实验研究. 生态学报,1997,17(5):478~482.

[53] Fung I Y, Tucker C Y, Prentice K C. Application of advanced very high resolution radimeter vegetation index to study of atmosphere-biosphere exchange of CO2. J Geophys Res, 1987, 92: 2999~3015.

[54] Bowden R D, Newkirk K M and Rullo G M. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol. Biochem., 1998, 30 (12):1591~1597.

[55] 黄承才, 葛滢, 常杰 等. 中亚热带东部三种主要木本群落土壤呼吸的研究. 生态学报, 1999, 19(3): 324~328.

[56] 方晰, 田大伦, 张仕吉. 樟树林人工林林地CO2释放量的研究. 中南林学院学报, 2002, 22(1):11~16.

[57] 周存宇, 周国逸, 张德强 等. 鼎湖山森林地表CO2通量及其影响因子的研究. 中国科学D辑(地球科学), 2004, 34(增刊Ⅱ):175~182.

[58] 沙丽清, 郑征,唐建维 等.西双版纳热带季节雨林的土壤呼吸研究. 中国科学D辑(地球科学),2004,34(增刊Ⅱ):167~174.

[59] Stewart J M, Wheatley R E. Estimates of CO2 production from eroding peat surface
[J ]. Soil Bio Biochem, 1990, 22:65~68.

[60] Frank A B, Liebig M A and Hanson J D. Soil carbon dioxide fluxes in northern semiarid grasslands . Soil Biology and Biochemistry, 2002, 34( 9):1235~1241.

[61] 李凌浩, 王其兵. 白永飞等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究. 植物生态学报, 2000, 24 (6) :680~686.

[62] 陈全胜, 李凌浩, 韩兴国 等. 温带草原11个植物群落夏秋土壤呼吸对气温变化的响应. 植物生态学报, 2001, 27(4):441~447.

[63] 陈述悦, 李俊, 陆佩玲 等.华北平原麦田土壤呼吸特征. 应用生态学报, 2004, 15(9):1552~1560.

[64] Yuste J C,Janssens I A,Carrara A,Celulemans R. Annual Q10 of soil respiration reflects plant phonological patterns as well as temperature sensitivity. Global Change Biology, 2004,10:161~169.

[65] Lloyd J, Taylor J A. On the temperature dependence of soil respiration . Functional Ecology. 1994, 8:315~323.

[66] 陈全胜, 李凌浩, 韩兴国 等. 土壤呼吸对全球温暖化的响应. 地学前缘, 2003, 10(4).

[67] Kutsch, W.L.,Kappen, L. Aspects of carbon and nitrogen cycling in soils of the Bornhoved Lake district. II. Modeling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different managements . Biogeochemistry, 1997, 39:207~224.

[68] Oechel W C, Vourlitis G l, Hastings S J,et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming . Nature, 2000, 406: 978~981.

[69] Giardina C P and Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature . Nature, 2000, 404: 858~861.

[70] Thornley J H M and Cannell M G R. Soil carbon storage response to temperature: an hypothesis . Annals Botany, 2001,87:591~598.

[71] Zogg G P, Zak D R,Ringelberg D B, et al. Compositional and functional shifts in microbial communities due to soil warming . Soil Science Society of America Journal, 1997, 61: 475~481.

[72] Cao M K, Tao B, LiI K R, et al. Interannual Variation in Terrestrial Ecosystem Carbon Fluxes in China from 1981 to 1998. Acta Botanica Sinica,2003 , 45 (5) : 552~560.

[73] Jenkinson D S, et al. Model estimates of CO2 emissions from soil in response to global warming. Nature, 1991,351:304~306.

[74] Raich J,Potter C S and Bhangawati D. Interannual variability in global soil respiration,1980~94. Global Change Biology, 2002, 8:800~812.

[75] Cao M K, Prince S D, Shugart H H. Increasing terrestrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric CO2. Global Biogeochemistry Cycle, 2002, 16(4): 1069.dio:10.1029/2001 GB001553.

[76] Cao M K, Prince S D, Li K R, et al. Response of terrestrial carbon uptake to climate inter-annual variability in China. Global Change Biology, 2003, 9, 536~546.

[77] 周 涛, 史培军, 孙睿, 王绍强. 气候变化对净生态系统生产力的影响. 地理学报, 2004, 59(3):357~365.

[78] 曹明奎, 于贵瑞, 刘纪远, 李克让. 陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟. 中国科学D辑(地球科学), 2004, 34(增刊Ⅱ):1~34.

[79] 王其兵, 李凌浩, 白永飞, 邢雪荣. 气候变化对草甸草原土壤氮素矿化作用影响的实验研究. 植物生态学报, 2000, 24 (6): 687~692.

[80] Hart S C and Perry D A. Transferring soils from high to low elevation forests. Global change Biology, 1999,5:23~32.

[81] Jonasson S, Havstrom M,Jensen M,Callahan T V. In-situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Pecologia, 1993,95:179~186.

[82] Shaw and Harte, Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone. Global Change Biology, 2001(7):193~210.

[83] Morecroft M D,Marrs R H,Woodward F I. Altitudinal and seasonal trends in soil nitrogen mineralization rate in the Scottish Highlands. Journal of Ecology, 1992,80:49~56.

[84] Ineson P , Taylor K, Harrison A F., et al. Effects of climate change on nitrogen dynamics in upland soils Ⅰ. A transplant approach. Global Change Biuology, 1998a, 4:143~152.

[85] Hobbie S E,Miley T A,Weiss M S. Carbon and nitrogen cycling in soils from acidic and nitrogen nonacidic tundra with different glacial histories in northern Alaska. Ecosystems, 2002, 5:761~774.

[86] Marion G M,Black C H. The effect of time and temperature on nitrogen mineralization in arctic tundra soils. Soil Sci Soc Am J, 1986, 51:1501~1508.

[87] Hobbie S E. Temperature and plant species control over litter decomposition in Alaska tundra. Eco Monogr, 1996, 66:503~522.

[88] Qi Y, Xu M, Wu J G. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecological Modelling, 2002, 15(3), 131~142.

文章导航

/