青藏高原的气候植被模型研究进展
收稿日期: 2006-04-01
修回日期: 2006-06-01
网络出版日期: 2006-07-25
基金资助
国家自然科学基金重点项目(40331006).
Progr ess on Climate- Vegetation Modeling in the Tibetan Plateau
Received date: 2006-04-01
Revised date: 2006-06-01
Online published: 2006-07-25
气候植被研究是全球变化研究的重要内容, 而模型研究是气候植被研究的重要手段。青藏 高原以其特殊的自然环境特点, 形成了气候与植被独特的适应机制, 为许多通用气候植被模型所 不能反映, 加之所受到人类活动的干扰相对较少, 决定其为植被气候研究的重要实验场地。本文 回顾了气候植被模型发展的相关历程, 评述了每类模型的特点及其不足。从植被格局研究和植被 生产力研究两个方面, 对青藏高原的气候植被研究进行了总结和分析, 认为模型研究是气候植被 研究的重要手段, 而青藏高原的研究在这方面还比较落后, 同时对青藏高原气候植被模型研究中 存在的一些问题, 如数据精度、模型的适宜性和结果验证等进行了讨论。认为今后青藏高原气候 植被模型研究的重点应是进一步明晰气候植被的关键过程, 立足高原环境特点开发有高原特色 的气候植被模型。
赵东升,李双成,吴绍洪 . 青藏高原的气候植被模型研究进展[J]. 地理科学进展, 2006 , 25(4) : 68 -78 . DOI: 10.11820/dlkxjz.2006.04.008
Modeling is a key method in the study of climate- vegetation, which is an important content in the field of global change researches. As a huge geographical unit, the Tibetan Plateau has strong effects on Chinese and East Asian climate because of its unique location and higher elevation. Because of special environment, the biomes on the Tibetan Plateau have many distinguishing characteristics that are not shown by some global models. The above- mentioned characteristics and less human disturbance make it an important area for study on climate- vegetation. This paper reviews five major types of climate- vegetation models that have been widely used to simulate response of vegetation to climate change and points out its advantage and disadvantage. Combining some related researches on the Tibetan Plateau, the paper summarizes the progress of climate- vegetation modeling from two aspects of vegetation distribution and vegetation net primary productivity, and finds modeling is a very important way for climate- vegetation researches. Nevertheless, in fact, climate- vegetation modeling is lagged behind other areas. So the crux of works in future is to master the crucial theories of climate- vegetation mutual reaction, then develop pertinent models with characteristics of the Tibetan Plateau.
Key words: climate- vegetation; modeling; the Tibetan Plateau
[1] 张新时. 全球变化的植被- 气候分类系统. 第四纪研究, 1993, 2: 157~169.
[2] 周广胜. 气候- 植被关系的研究I———气候- 植被分类.见:林金安主编, 植物科学综论. 哈尔滨: 东北林业大学出版社, 1993, 246~254.
[3] 周广胜, 王玉辉. 全球变化与气候- 植被分类研究和展望. 科学通报, 1999, 24( 44) : 2587~2593.
[4] Houghton J T, Meira Filhl L G, Bruce J, et al. Climate Change 1994: Radiative Force of Climate Change and an Evaluation of the IPCC 1992 Emission Scenarios. Cambridge University Press, 1995, 339.
[5] 张新时. 植被的PE( 可能蒸散) 指标与植被—气候分类( 一) : 几种主要方法与PEP 程序介绍. 植物生态学与动植物学 学报, 1989, 13( 1) : 1~9.
[6] 倪建, 方精云, 张新时. 植被气候分类系统.见: 方精云主编全球生态学- 气候变化与生态响应. 高等教育出版社, 施普林格出版社, 2000, 158~176.
[7] K#ppen W, Das geographisches system der Klimate. In: K#ppen W, Geiger R. (Eds.), Handbuch der Klimatologie.Gerbruder Borntraeger, Berlin, 1936, 1~46.
[8] Kira T. A new classification of climate in eastern Asia as the basis for agricultural geography. Horicultural Institute, Kyoto University, Kyoto, 1945, 1~23.
[9] Whittaker R H. A criticism of the plant association and climatic climax concepts. Northwest Science 1951, 25: 17~31.
[10] Whittaker R H. Communities and ecosystems. 2nd ed. MacMillan Publishing Co. Inc. New Yoke.1975.
[11] 黄秉维. 中国之植物区域. 《黄秉维文集》编辑小组. 自然地理综合工作六十年. 北京: 科学出版社59~77
[12] Holdridge L R. Determination of world plant formations from simple climatic data. Science. 1947, 105:367 ~368.
[13] Holdridge LR. Life zone ecology. Tropical Science Center, San Jose. Costa Rica, 1967.
[14] Box EO. Macroclimate and plant forms: An introduction to predictive modeling in phytogeography. Hague: Dr. W. Junk Publishers, 1981.
[15] Watt K E F. Principles of environmental science. McGraw Hill Book Co., 1973.
[16] Prentice IC, Cramer W., Harrison SP, Leemans P, Monserud RA, Solomon AM 1992. A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 1992, 19: 117~134.
[17] Neilson RP. A model for predicting continental - scale vegetation distribution and water balance. Ecological Application 1995, 5: 362~385.
[18] 赵茂盛, Ronald P, Neilson, 延晓东等. 气候变化对中国植被可能影响的模拟. 地理学报, 2002, 57( 1) : 28~38.
[19] VEMAP Members. Vegetation/ecosystem modeling and analysis project: comparing biogeography and biogeochemistry mod-els in a continental - scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochemical Cycles,1995, 9 (4): 407~437.
[20] Sellers P J, et al. A revised land- surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. Journal of Climate, 1996a, 9: 738~763.
[21] Sellers P J, Bounoua L, Collatz G L, et al. Comparison of ra- diative and physiological effects of doubled atmospheric CO2 on climate. Science,1996b, 271:1402~1406.
[22] Potter C S, Randerson J T et al. Terrestrial ecosystem production: A process model based global satellite and surface data. Global Biogeochemistry Cycles, 1993, 7 (4):811~841.
[23] Prince S D. A model of regional primary production for use with coarse resolution satellite data. Internetional Journal of Remote Sensing, 1991, 12(6): 1313~1330.
[24] Running S W, Gower S T. FOREST- BGC, a general model of forest ecosystem processes for regional application, II, dynamic carbon allocation and nitrogen budgets. Tree Physiology, 1991, 9: 147~160.
[25] Parton W J, Scurlock J M O, Ojima D S. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993, 7: 785~809.
[25] McGuire A D, Melillo J M, Kicklighter D W, et al. Equilibrium responses of soil carbon toclimate change: empirical and process- based estimates. Journal of Biogeography, 1995, 22: 785~795.
[27] McGuire A D, Melillo J M, Kicklighter D W, et al. Equilibrium responses of global primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to change in vegetation nitrogen concentration. Global Biogeochemical Cycle, 1997, 11: 173~189.
[28] Woodward F I, Smith T M, Emanuel W R. A global land primary productivity and phytogeography model. Global Biogeochemical Cycles, 1995, 9: 471~490.
[29] Woodward F I, M R Lomas, R A Betts. Vegetation- climate feedbacks in greenhouse world. Philosophical Transactions of the Royal Society, 1998, 353B, 29~39.
[30] Haxeltine A, Prentice I C. BIOME3: an equilibrium biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types. Global Biogeochemical Cycles 1996, 10: 693~709.
[31] Kaplan J O, Bigelow N H, Prentice I C, Harrison S P, Bartlein P J, Christensen T R, Cramer W, Matveyeva N V, McGuire A D, Murray D F, Razzhivin V Y, Smith B, Walker D A, Anderson P M, Andreev A A, Brubaker L B, Edwards M E, and Lozhkin A V. Climate change and arctic ecosystems II: Modeling, paleodata- model comparisons, and future projections. Journal of Geophysical Research, 2003, 108(D19): 1~12.
[32] Foley J A, Prentice I C, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 1996, 10, 693~709.
[33] 倪建. BIOME 系列模型: 主要原理与应用. 植物生态学报, 2002, 26( 4) 481~488.
[34] Peng Changhui. From static biogeographical model to dynamic global vegetation model: a global perspective on modeling Ecological Modelling, 2000, 135 , 33~54.
[35] 中国科学院青藏高原综合科学考察队: 张荣祖, 郑度, 杨勤业. 西藏自然地理. 北京: 科学出版社, 1982.
[36] 李文华, 周兴民, 石培礼. 青藏高原生态系统分布规律及其与水热因子的关系. 李文华, 周兴民. 青藏高原生态系统 及优化利用模式. 广州: 广东科技出版社, 1998, 19~67.
[37] 刘志民, 杨甲定, 刘新民. 青藏高原几个主要环境因子对植物的生理效应. 中国沙漠, 2000, 20( 3) : 309~313.
[38] Zhang X S, Yang D A, Zhou G S, Liu C Y, Zhang J. Model expectation of impacts of global climate change on biomes of the the Tibetan Plateau. In: Omasa K, Kai K, Taoda H, Uchijima Z, Yoshino M (eds.), Climate Change and Plants in East Asia. Spring- Verlag, Tokyo, 1996, 25~38.
[39] 中国科学院青藏高原综合科学考察队. 西藏森林. 北京: 科学出版社, 1985.
[40] 郑度.青藏高原自然地域系统研究. 中国科学(D 辑) , 1996, 26( 4) : 336~341
[41] 冷允法, 石培礼. 生态系统的潜在分布. 李文华, 周兴民. 青藏高原生态系统及优化利用模式. 广州: 广东科技出版社, 1998, 55~57.
[42] 郑远长. 贡嘎山区主要植物群落分布与气候的关系. 山地研究, 1995, 12( 4) : 201~206.
[43] 郑远长, 王美娟, 吴正方. 青藏高原东南部自然带垂直分布的数学模型及生态学研究. 自然资源学报, 1996, 11( 3) : 249~255.
[44] 石培礼. 亚高山林线生态交错带的植被生态学研究
[博士毕业论文] .北京, 1999.
[45] 张新时, 刘春迎. 全球变化条件下的青藏高原植被变化图景预测. 见: 中国国家自然科学基金委员会生命科学部与中国科学院上海文献情报中心主编全球变化与生态系统上海: 上海科学技术出版社, 1994, 17~26.
[46] Ni J. A biome classification of China based on plant functional types and the boime3 model. Folia Geobotanica. 2001, 36: 113~129.
[47] Ni J. A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Mountain Research and Development 2001, 20 (1): 80~89.
[48] 孙睿, 朱启疆. 气候变化对中国陆地植被净第一性生产力影响的初步研究. 遥感学报, 2001, 5( 1) : 58~61.
[49] 罗天祥, 李文华, 冷允法等. 青藏高原自然植被总生物量的估算与净初级生产量的潜在分布. 地理研究, 1998, 17 ( 4) : 337~334.
[50] Luo T X, Shi P L, Luo J, et al. Distribution Patterns of aboveground biomass in Tibetan alpine vegetation transects. Acta Phytoecologica Sinica, 2002, 26(6): 668~676.
[51] 李文华, 郑度, 周兴民等.高原生态系统与自然地带. 孙鸿烈, 郑度. 青藏高原形成演化与发展. 广州: 广州科技出 版社, 1998, 233~295.
[52] 李文华, 王启基, 罗天祥等. 青藏高原生态系统生物生产量. 李文华, 周兴民. 青藏高原生态系统及优化利用模式. 广 州: 广东科技出版社, 1998, 183~270.
[53] 朴世龙, 方精云. 1982~1999 年青藏高原植被净第一性生产力及其时空变化. 自然资源学报, 2002, 17( 3) : 373~380.
[54] 周才平, 欧阳华, 王勤学等. 青藏高原主要生态系统净初级生产力估算. 地理学报, 2004, 59( 1) : 74~79.
[55] 吕建华, 季劲钧. 青藏高原大气———植被相互作用的模拟实验: 植被叶面积指数和净初级生产力. 大气科学, 2002, 26 ( 2) : 255~262.
/
〈 | 〉 |