土地利用

基于Hyperion高光谱数据的土地退化制图研究——以陕西省横山县为例

展开
  • 1. 中国土地勘测规划院, 国土资源部土地利用重点实验室,北京 100035|
    2. 江西省东华理工学院,抚州 344000
吴剑(1982-),男,江西赣州人,硕士,主要从事高光谱遥感应用研究.E-mail: jianjian431@tom.com

收稿日期: 2005-12-01

  修回日期: 2006-01-01

  网络出版日期: 2006-03-25

基金资助

国家自然科学基金项目(40271007)和"国土资源部百名优秀青年科技人才计划"项目资助.

Study On Land Degradation Mapping by Using Hyperion Data in HengShan Region of China

Expand
  • Key Laboratory of Land Use, Ministry of Land and Resources, China Land Surveying &|Planning Institute, Beijing 100035, China|2. East China Institute of Technology, Fuzhou 344000

Received date: 2005-12-01

  Revised date: 2006-01-01

  Online published: 2006-03-25

摘要

以陕西省横山县境内的Hyperion数据为数据源,提出一种针对土地退化的制图方法:土地退化指数法(LDI: Land Degradation Index)。在影像分类的基础上,利用在分类过程中提取的训练样本进行线性波谱分离,得到各个端元的分离影像和RMS误差影像,再通过设置新的端元和反复运行线性波谱分离算法得到最终的训练样本,然后利用神经网络法对影像进行二次分类,最后在掩膜处理的基础之上把土地分为:轻度退化,中度退化和高度退化三种类型(Kappa=0.90)。文中分别采用了三种分类方法:监督分类与非监督分类相结合的混合分类方法、光谱角制图(SAM)方法、混合调制匹配滤波(MTMF)方法。结果显示混合分类方法(Kappa=0.71)具有比光谱角制图方法(Kappa=0.54)和混合调制匹配滤波方法(Kappa=0.60)更高的分类精度,所以选择在混合分类的基础上进行土地退化指数LDI的分析。

本文引用格式

吴剑,何挺,程朋根 . 基于Hyperion高光谱数据的土地退化制图研究——以陕西省横山县为例[J]. 地理科学进展, 2006 , 25(2) : 131 -138 . DOI: 10.11820/dlkxjz.2006.02.015

Abstract

Land degradation, defined as the loss or the reduction of the potential utility or productivity of the land, is a major environmental problem in the world today. The land degradation process is generally divided into three classes: (1) physical degradation; (2) biological degradation, and (3)chemical degradation. The assessment of land degradation requires the identification of indicators such as soil vulnerability to erosion. Generally, the assessment of the state of land degradation can be carried out by using the Global Assessment of Soil Degradation (GLASOD) method. Hoosbeek et al. recommended this qualitative method to classify soil degradation by using remote sensing data. Degradation features can be detected directly or indirectly by using image data. Based on the Hyperion images, this paper brings forward a new mapping algorithm, called Land Degradation Index, aimed at land degradation in Hengshan region of China. It is based on the classified process. We applied the linear spectral unmixing algorithm with the training samples derived from the formerly classified process so as to find out new endmembers in the RMS error imagine. After that, by using neutral net mapping with new training samples, the classified result was gained. In addition, after applying mask processing, the soils were grouped to 3 types (Kappa =0.90): highly degraded soils; moderately degraded soils; and slightly degraded soils. By analyzing 3 mapping methods, i.e. mixture-classification, the spectral angle mapper and mixture-tuned matched filtering, the results suggest that the mixture-classification has the higher accuracy (Kappa=0.7075) than the spectral angle mapper (Kappa=0.5418) and the mixture-tuned matched filter (Kappa=0.6039). As a result, the mixture-classification is selected to carry out Land Degradation Index analysis.

参考文献


[1] Mohamed Chikhaoui,Ferdinand Bonn,Amadou Idrissa Bokoye. A spectral index for land degradation mapping using ASTER data: Application to a semi-arid Mediterranean catchment. International Journal of Applied Earth Observation and Geoinformation. 2005(7): 140~153.

[2] 卢金发. 中国南方地区土地退化动态变化及人类活动影响. 地理科学进展,1999,9(18):216~220.

[3] 孙 华, 张桃林等. 土地退化及其评价方法研究概述. 农业环境保护,2001,20(4):283~285.

[4] 王 静, 何 挺等. 基于3S 技术的耕地退化监测与评价技术方法探讨. 测绘科学, 2002,12(27):45~48.

[5] 国土资源部土地利用重点实验室. 成像光谱技术在土地动态监测中的应用. 北京:地质出版社,2005.

[6] Congaton R G. A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment,1991(37) : 35~46.

[7] 关元秀,刘高焕,刘庆生等. 黄河三角洲盐碱地遥感调查研究. 遥感学报, 2001 ,5(1) : 46~52.

[8] 刘泳梅,李锐等.基于影像融合的陕北黄土丘陵沟壑区土地利用自动分类.中国水土保持科学,2004,12(2):6~10.

[9] Liu Yongmei, Tang Guoan, Li Tianwen, et al. An applied research on remote sensing classification in the Loess Plateau. Journal of Geographical Sciences. 2003 ,13(4) : 395~399.

[10] Ediriwickrema J, Khorrsm S. Hierarchical maximum-likelihood classification for improved accuracy. IEEE Transactions on Geoscience and Remote Sensing. 1997 , 35(4) : 810~816.

[11] Jeremy P.Shive. Hyperspectral Processing Workshop. INEEL,Idaho State University,2003.

[12] 北京星图环宇科技有限公司,美国RSI公司. ENVI遥感影像处理与实践. 北京:北京师范大学出版社,2005.

[13] 彭望绿,白振平, 曹 彤等. 遥感概论,北京:高等教育出版社,2002.

[14] ENVI User’s Guide. RSI Inc. http://www.RSInc.com/.

文章导航

/