气候与环境变化

植物叶片性状沿海拔梯度变化研究进展

展开
  • 1. 中国科学院地理科学与资源研究所,北京 100101;
    2. 中国科学院研究生院,北京 100049
宋璐璐(1985-),女,山西人,博士,主要从事草地生态研究。E-mail: song11.10b@igsnrr.ac.cn

收稿日期: 2011-03-01

  修回日期: 2011-06-01

  网络出版日期: 2011-11-25

基金资助

国家自然科学基金项目(31070427);国家973项目课题(2010CB950902)。

Research Advances on Changes of Leaf Traits along an Altitude Gradient

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2011-03-01

  Revised date: 2011-06-01

  Online published: 2011-11-25

摘要

由于在海拔梯度上各种环境因子表现出连续的梯度性变化,以海拔梯度为平台研究植物叶片性状的适应特征有助于揭示植物对气候变化的响应,进而可以为研究全球变化与陆地生态系统的关系提供研究基础。本文重点分析了植物的叶寿命、比叶面积、叶氮含量、叶绿素含量等叶片结构性状和气孔导度、叶片羧化效率、水分利用效率和叶片δ13C等叶片功能性状随海拔梯度的变化规律和特点,探讨了植物叶片性状的研究不足及未来发展方向,以便为国内相关研究的开展提供参考。

本文引用格式

宋璐璐, 樊江文, 吴绍洪 . 植物叶片性状沿海拔梯度变化研究进展[J]. 地理科学进展, 2011 , 30(11) : 1431 -1439 . DOI: 10.11820/dlkxjz.2011.11.014

Abstract

A variety of environment factors show continuous gradient changes under an altitude gradient, so it is very significant to reveal the responses of the plants traits under the climatic change under altitude gradient and the results can also provide an foundation to understand the relationship between the terrestrial ecosystem and the global change. This article puts emphases on the changes of leaf span, specific leaf area, leaf nitrogen content, chlorophyll, stomata conductance, carboxylation efficiency, water use efficiency and leaf δ13C along an altitude gradient. This article also explores some uncertainties on the interpretation of mechanisms of leaf traits along the altitude gradient. This review provides a good knowledge for directing the relevant studies in China.

参考文献

[1] Mclntyre S, Lavorel S, Landsberg J, et al. Disturbanceresponse in vegetation towards a global perspective onfunctional traits. Journal of Vegetation Science, 1999, 10(5): 621-630.

[2] Körner C, Farquhar G D, Wong S C. Carbon isotope discriminationby plants follows latitudinal and altitudinaltrends. Oecologia, 1991, 88(1): 30-40.

[3] 傅抱璞. 山地气候. 北京: 科学出版社, 1983.

[4] Cordell S G, Goldstein F C, Meinzer P M, et al. Regulationof leaf life-span and nutrient-use efficiency of Metrosideropolymorpha trees at two extremes of a long chronosequencein Hawaii. Oecologia, 2001, 127(2): 198-206.

[5] Farquhar G D, Richards R A. Isotopic composition ofplant carbon correlates with water-use efficiency ofwheat genotypes. Australian Journal of Plant, 1984, 11(6): 539-552.

[6] Körner C, Farquhar G D, Roksandic Z. A global surveyof carbon isotope discrimination in plants from high altitude.Oecologia, 1988, 74(4): 623-632.

[7] Gower S T, Reich P B, Son Y. Canopy dynamics andaboveground production of five tree species with differentleaf longevities. Tree Physiology, 1993, 12(4):327-345.

[8] Reich P B, Oleksyn J, Modrzynski J, et al. Evidence thatlonger needle retention of spruce and pine populations athigh elevations and high latitudes in largely a phenotypicresponse. Tree Physiology, 1996, 16(1): 643-645.

[9] Luo J X, Zang R G, Li C Y. Physiological and morphologicalvariations of Picea asperata populations originatingfrom different altitudes in mountains of southwestern China.Forest Ecology and Management, 2006, 221(1-3):285-290.

[10] Boratynski A, Jasinska A, Boratyska K, et al. Life span ofneedles of Pinus Mugo turra: Effect of altitude and speciesorigin. Polish Journal of Ecology, 2009, 57(3):567-572.

[11] Ewers F W, Schmid R. Longevity of needle fascicles ofPinus longaeva (Bristlecone pine) and other North Americanpines. Oecologia, 1981, 51(19): 107-115.

[12] Diemer M, Körner Ch, Silvia Prock. Leaf life spans inwild perennial herbaceous plants: A survey and attemptsat a functional interpretation. Oecologia, 1992, 89(1):10-16.

[13] Takahashi K, Miyajima Y. Relationships between leaf lifespan, leaf mass per area, and leaf nitrogen cause differentaltitudinal changes in leaf δ13C between deciduous and evergreenspecies. Botany, 2008, 86(11): 1233-1241.

[14] Reich P B, Walters M B, Ellsworth D S. Leaf life-span inrelation to leaf, plant, and stand characteristics among diverseecosystems. Ecological Monograph, 1992, 62(3):365-392.

[15] Reich P B, Waiters M B, Ellsworth D S. Leaf life-span asa determinant of leaf structure and function among 23tree species in Amazonian forest communities. Oecologia,1991, 86(1): 16-24.

[16] Reich P B, Waiters M B, Ellsworth D S, et al. Relationshipsof leaf dark respiration to leaf nitrogen, specificleaf area and leaf life-span: A test across biomes and functionalgroups. Oecologia, 1998, 114(4): 471-482.

[17] Körner. The nutritional status of plants from high altitudes,A worldwide comparison. Oecologia, 1989, 81(3):379-391.

[18] He J S, Wang Z H, Wang X P, et al. A test of generality ofleaf trait relationship on the Tibetan Plateau. New Phytologist,2006, 170(4): 377-385.

[19] Wright I J, Westoby M, Reich P B. Convergence towardshigher leaf mass per area in dry and nutrient-poor habitatshas different consequences for leaf life span. Journalof Ecology, 2002, 90(3): 534-543.

[20] Hultine K R, Marshall J D. Altitude trends in conifer leafmorphology and stable carbon isotope composition.Oecologia, 2000, 123(1): 32-40.

[21] Vitousek P M, Field C B, Matson P A. Variation in foliar13C in Hawaiian Metrosideros polymorpha: A case of internalresistance? Oecologia, 1990, 84(3): 362-370.

[22] Kogami H, Hanba Y T, Kibe T, et a1. CO2 transfer conductance,leaf structure and carbon isotope compositionof Polygonum cuspidatum leaves from low and high altitudes.Plant,Cell and Environment, 2001, 24(5): 529- 538.

[23] Luo T X, Luo J, Pan Y D. Leaf traits and associated ecosystemcharacteristics across subtropical and timberlineforests in the Gongga Mountain, Eastern Tibetan Plateau.Oecologia, 2005, 142(3): 261-273.

[24] Cordell S, Goldstein G, Mueller-Dombois D, et a1. Physiologicaland morphological variation in Metrosiderospolymorpha,a dominant Hawaiian tree species,along analtitudinal gradient: The role of phenotypic plasticity.Oecologia, 1998, 113(2): 1l8-196.

[25] Körner C H, Bannister P, Mark A F. Altitude variation instomatal conductance, nitrogen content and leaf anatomyin different plant life forms in New Zealand. Oecologia,1986, 69(4): 577-588.

[26] Morecroft M D, Woodward F I, Marrs R H. Altitudinaltrends in leaf nutrient contents, leaf size and of Alchemillaalpine. Functional Ecology, 1992, 6(6): 730-740.

[27] Körner C H, Diemer M. In situ photosynthetic responsesto light, temperature and carbon dioxide in herbaceousplants from low and high altitude. Functional Ecology,1987, 1(3): 179-194.

[28] Wright I J, Reich P B, Cornelissen H C. Assessing thegenerality of global leaf trait relationships. New phytologist,2004, 485-496.

[29] Mooney H A, Strain B R, Marda W. Photosynthetic efficiencyat reduced carbon dioxide tensions. Ecology,1966, 47(3): 490-491.

[30] 卢存福, 贲桂英. 高海拔地区植物的光合特性. 植物学通报, 1995, 12(2): 38-42.

[31] Nobel P S, Israel AA. Cladode development, environmentalresponses of CO2 uptake, and productivity for Opuntiaficus-indica under elevated CO2. Journal of ExperimentalBotany, 1994, 45(3): 295-303.

[32] Morecroft M D, Woodward F I. Experimental investigationson the Environmental determination of 13C at differentaltitudes. Journal of Experimental Botany, 1990, 41(10): 1303-1308.

[33] Friend A D, Woodward F I, Switsur V R. Field measurementsof photosynthesis, stomatal conductance, leaf nitrogenand 13C along altitudinal gradients in Scotland. FunctionalEcology, 1989, 3(1): 117-122.

[34] Marshall J D, Zhang J. Carbon isotope discrimination andwater-use efficiency in native plants of the North-CentralRockies. Ecology, 1994, 75(7): 1887-1895.

[35] Kloeppel B D, Gower S T, Treichel I W, et al. Foliarcarbonisotope discrimination in Larix species and sympatricevergreen conifers: A global comparison. Oecologia,1998, 114(2): 153-159.

[36] 史作民, 程瑞梅, 刘世荣. 高山植物叶片13C的海拔响应及其机理. 生态学报, 2004, 12(12): 2901-2905.

[37] 胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展. 生态学报, 2009, 29(3): 1498-1507.

[38] Condon A G, Richards R A, Rebetzke G J, et al. Breedingfor high water-use efficiency. Journal of ExperimentalBotany, 2004, 407(55): 2447-2460.

[39] Baldocehi D A. Comparative study of mass and energyexchange over a closed C3 (wheat) and an open C4 (corn)crop. II: CO2, exchange and water use efficiency. Agriculturaland Forest Meteorology, 1994, 67(3-4): 291-321.

[40] 李荣生, 许煌灿, 尹光天, 等. 植物水分利用效率的研究进展. 林业科学研究, 2003, 16(3): 366-371.

[41] Jone D H, Zhang J W. Carbon isotope discrimination andwater-use efficiency in native plants of the morth centralrockies. Ecology, 1994, 75(7): 1887-1895.

[42] Hubick K T, Farquhar G D, Shorter R. Correlation betweenwater-use efficiency and carbon isotope discriminationin diverse peanut (Arachis) Germplasm. AustralianJournal of Plant Physiology, 2002, 13(6): 803-816..

[43] Delucia E H, Schiesinger W H. Resource fuse efficiencyand drought tolerance in adjacent great basin and sierranPlants. Ecology, 2001, 72 (1): 51-58.

[44] Luo T X, Zhang L, Zhu H Z, et al. Correlations betweennet primary productivity and foliar carbon isotope ratioacross a Tibetan ecosystem transect. Ecography, 2009, 32(3): 526-538.

[45] Song M H, Duan D Y, Chen H, et al. Leaaf δ13C reflectsecosystem patterns and responses of alpine plants to theenvironments on the Tibetan Plateau. Ecography, 2008,31(4): 499-508.

[46] Wang G H, Ni J. Responses of plant functional types toan environmental gradient on the Northeast China Transect.Ecological Research, 2005, 20(5): 563-572.

[47] Wiemann M C, Dilcher D L, Manchester S R. Estimationof mean annual temperature from leaf and wood physiognomy.Forest Science, 2001, 47(2): 141-149.

[48] Jauffret S, Visser M. Assigning life-history traits to plantspecies to better quality arid land degradation in PresaharianTuniaisa. Journal of Arid Environments, 2003, 55(1):1-28.
文章导航

/