资源与环境

内陆水体环境遥感监测研究评述

展开
  • 中国水利水电科学研究院 水资源研究所,北京 100038
黄耀欢(1982-),男,安徽黄山人,博士生,主要从事水文水资源、地理信息应用技术等方面的研究.E-mail: huangyh@lreis.ac.cn

收稿日期: 2009-08-01

  修回日期: 2010-03-01

  网络出版日期: 2010-05-25

基金资助

国家自然科学基金创新研究群体科学基金项目(50721006);国家重点基础研究与发展计划(973)(2006CB403405).

The Review of Inland Water Environment Monitoring Based on Remote Sensing

Expand
  • China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Received date: 2009-08-01

  Revised date: 2010-03-01

  Online published: 2010-05-25

摘要

应用遥感技术进行水质监测较常规监测具有巨大优势,能快速、大尺度、低成本的监测水质参数在时空上的变化状况.本文首先简要阐述了内陆水体环境遥感监测的基本原理;其次,介绍了常用水质参数的遥感监测研究现状,包括叶绿素a(Chl-a)、悬浮物(SS)、有色可溶性有机物(CDOM)以及总磷(TN)、总氮(TP)等其他水质参数,并将其划分为经验模型和生物光学模型两种监测方法;再次,对常用的遥感数据源进行了介绍和优缺点的评述;最后,讨论了内陆水体环境遥感监测误差来源,并对今后内陆水体环境遥感监测研究重点进行了展望.

本文引用格式

黄耀欢, 王浩, 肖伟华, 秦大庸 . 内陆水体环境遥感监测研究评述[J]. 地理科学进展, 2010 , 29(5) : 549 -556 . DOI: 10.11820/dlkxjz.2010.05.006

Abstract

Using the technique of remote sensing to monitor the water quality is an advanced tool compared to traditional monitoring methods. This paper reviews the progress of application of remote sensing in inland water environment monitoring. Firstly, the principles of water environment parameters retrieval were addressed. Secondly, the applications of several inland water quality parameters in monitoring by remote sensing were discussed, including Chlorophyll a (Chl-a), Suspended Solids (SS), Colored Dissolved Organic Matter (CDOM), Total Phosphorus (TP), Total Nitrogen concentrations , transparency and turbidity of inland water and so on. And then we classified the existing retrieval models into empirical model and bio-optical model. Thirdly, different remote sensing images and their advantages and disadvantages for inner water environment monitoring were introduced. Finally, we discussed the problems of retrieval precision and proposed some suggestions for further research.

参考文献


[1] Brown L R. The global loss of topsoil. Journal of Soil and Water Conservation. 1984, 39(3): 162-165.

[2] Lal R. Soil erosion. Ankeny, Lowa: Soil and Water Conservation Society, 1996.

[3] 韩敏. 水文与水管理中的遥感技术. 北京: 中国水利水电出版社, 2006: 278-280.

[4] 尹改, 王桥, 郑丙辉, 等. 国家环保总局对中国资源卫星的需求与分析(上). 中国航天, 1999(9): 3-7.

[5] 陈楚群, 施平, 毛庆文. 应用TM数据估算沿岸海水表层叶绿素浓度模型研究. 环境遥感, 1996, 11(3): 168-175.

[6] Ritchie J, Cooper C, Schiebe F. The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon lake, Mississippi. Remote Sensing of Environment, 1990, 33(2): 137-148.

[7] 王学军, 马廷. 应用遥感技术监测和评价太湖水质状况. 环境科学, 2000, 21(6): 65-68.

[8] 吴敏, 王学军. 应用MODIS遥感数据监测巢湖水质. 湖泊科学, 2005, 17(2): 110-113.

[9] Cairns S H, Dickson K L, Atkinson S F. An examination of measuring selected water quality trophic indicators with SPOT satellite HRV data. Photogrammetric Engineering and Remote Sensing, 1997, 63(3): 263-265.

[10] 雷坤, 郑丙辉, 王桥. 基于中巴地球资源1号卫星的太湖表层水体水质遥感. 环境科学学报, 2004, 24(3): 376-380.

[11] Tassan S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. Applied Optics, 1994, 33(12): 2369-2378.

[12] 闻建光, 肖青, 杨一鹏, 等. 基于Hyperion数据的太湖水体叶绿素a浓度遥感估算. 湖泊科学, 2006, 18(6): 327-336.

[13] 疏小舟, 尹球, 匡定波. 内陆水体藻类叶绿素浓度与反射光谱特征的关系. 遥感学报, 2000, 4(1): 41-45.

[14] Kallio K, Kutser T, Hannonen T, et al. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. The Science of the Total Environment, 2001, 368(3): 59-77.

[15] Hoogenboom H J, Dekker A G, De Haan J F. Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion. Canadian Journal of Remote Sensing, 1998, 24(2): 144-152.

[16] 疏小舟, 汪骏发, 沈鸣明, 等. 航空成像光谱水质遥感研究. 红外与毫米波学报, 2000, 19(4): 273-276.

[17] 李素菊, 王学军. 内陆水体水质指标光谱特征与定量遥感. 地理学与国土研究, 2002, 18(2): 26-30.

[18] 王桥, 张兵, 韦玉春, 等. 太湖水体环境遥感监测试验及其软件实现. 北京: 科学出版社, 2008: 29.

[19] 赵英时. 遥感应用分析原理与方法. 北京: 科学出版社, 2003.

[20] Shubha S. Remote sensing of ocean colour in coastal, and other optically-complex, waters. IOCCG Report, No. 3. Canada: International Ocean Colour Coordinating Group, 2000.

[21] 吕恒, 江南, 李新国. 内陆湖泊的水质遥感监测研究. 地球科学进展, 2005, 20(2): 185-192.

[22] Wezernak C T, Tanis F J, Bajza C A. Trophic state analysis of island lakes. Remote Sensing of Environment, 1976,(5): 147-165.

[23] 杨一鹏, 王桥, 王文杰, 等. 水质遥感监测技术研究进展. 地理与地理信息科学, 2004, 20(6): 6-7.

[24] Thiemann S, Kaufmann H. Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg Lake District, Germany. Remote Sensing of Environment, 2000, 73(2): 227-235.

[25] Shu X Z, Yin Q, Kuang D B. Relationship between Algal chlorophyll concentration and spectral reflectance of inland water. International Journal of Remote Sensing, 2000, 4(1): 41-45.

[26] 李素菊, 吴倩, 王学军. 巢湖浮游植物叶绿素含量与反射光谱特征的关系. 湖泊科学, 2002, 14(3): 328-234.

[27] Illuz D, Yacobi Y Z, Gitelson A. Adaptation of an algorithm for chlorophyll-a estimation by optical data in the oligotrophic Gulf of Eilat. International Journal of Remote Sensing, 2003, 24(5): 1157-1163.

[28] 陈楚群, 施平, 毛庆文. 南海海域叶绿素浓度分布特征的卫星遥感分析. 热带海洋学报, 2001, 4(20): 66-70.

[29] Pulliainen J, Kallio K, Eloheimo K, et al. A semi-operative approach to lake water quality retrieval from remote sensing data. The Science of the Total Environment, 2001, 268(2): 79-93.

[30] Han L, Rundquist D C. The response of both surface reflectance and the underwater light field to various levels of suspended sediments: preliminary results. Photogrammetric Engineering and Remote Sensing, 1994, 60(12): 1463-1471.

[31] 周艺, 周伟奇, 王世新, 等. 遥感技术在内陆水体水质监测中的应用. 水科学进展, 2004, 15(3): 312-316.

[32] Ritchie J C, Schiebe F R, Mchenry J R. Remote sensing of suspended sediment in surface water. Photogrammetric Engineering and Remote Sensing, 1976,(42): 1539-1545.

[33] Mertes L A K, Smith M O, Adams J B. Estimating suspended sediment concentrations in surface waters of the Amazon River wetlands from Landsat Images. Remote Sensing Environment, 1993, 43(3): 281-301.

[34] Gitelson A, Garbuzov G, Szilagyi F, et al. Quantitative remote sensing methods for real-time monitoring of inland waters quality. International Journal of Remote sensing, 1993, 14(7): 1269-1295.

[35] 蔡丽娜, 刘平波, 智长贵. 水质遥感监测方法的探讨. 测绘与空间地理信息, 2008, 31(4): 68-73.

[36] 李京. 水域悬浮固体含量的遥感定量研究. 环境科学学报, 1986, 6(2): 166-173.

[37] 黎夏. 悬浮泥沙遥感定量的统一模式及其在珠江口中的应用. 环境遥感, 1992, 7(2): 106-113.

[38] Schiebe F R, Harrington J A, Ritchie J C. Remote sensing of suspended sediments: The lake Chicot, Arkansas project. International Journal of Remote Sensing, 1992, 13(8): 1487-1509.

[39] Zhang B, Li J, Shen Q, et al. A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance. Environmental Monitoring and Assessment, 2008, 145(3): 339-347.

[40] Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology Oceanography, 1981, 26(1): 43-53.

[41] 陈楚群, 潘志林, 施平. 海水光谱模拟及其在黄色物质遥感反演中的应用. 热带海洋学报, 2003, 22(5): 33-39.

[42] 杨一鹏, 王桥, 肖青. 太湖富营养化遥感评价研究. 地理与地理信息科学, 2007, 23(3): 33-37.

文章导航

/