水文与气候变化

大通河源区多年冻土的地温特征及其影响因素分析

展开
  • 中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,兰州730000
李静(1979-),女,博士,助理研究员,主要从事寒区环境与冻土分布的研究。E-mail: li_jing9797@lzb.ac.cn

收稿日期: 2011-01-01

  修回日期: 2011-04-01

  网络出版日期: 2011-07-25

基金资助

国家重点基础研究发展计划项目(2010CB951402);国家自然科学基金项目(40871040);国家创新工程项目(40821001);冻土工程国家重点实验室规划项目(SKLFSE-ZQ-10);寒旱所人才基金项目(Y184A91001)。

Characteristics of Ground Temperatures and Influencing Factors of Permafrost Development and Distribution in the Source Region of Datong River

Expand
  • State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China

Received date: 2011-01-01

  Revised date: 2011-04-01

  Online published: 2011-07-25

摘要

多年冻土是一种热现象,地温是判断多年冻土特征的有效指标。通过对祁连山区东北部大通河源区多年冻土分布状况的野外考察与钻探等工作,借助于实测地温数据和地温曲线分析工具,对大通河源区39 个钻孔点的多年冻土地温特征进行了对比分析,对影响多年冻土地温的主要因素进行了概括和总结。结果表明,在大通河源区,高程、植被类型、地表覆盖特征、土壤水分条件等是影响多年冻土地温的主要因素。根据尺度性划分的结果,高程是影响区域多年冻土地温变化的一级因素;随着空间尺度的下降,植被类型和地表覆盖特征成为二级影响因素;在沼泽化草甸植被覆盖区,土壤水分条件又成为影响多年冻土地温的三级影响因素。对多年冻土地温特征及影响因素的分析不仅有助于了解区域多年冻土的稳定性、预测全球气候变暖背景下的多年冻土演变和退化,还可以为寒区气候变化、生态、水文等相关领域的发展提供基础,为各项工程设施的实施和维护提供建议和指导。

本文引用格式

李静, 盛煜, 陈继, 张波, 吴吉春, 张秀敏 . 大通河源区多年冻土的地温特征及其影响因素分析[J]. 地理科学进展, 2011 , 30(7) : 827 -836 . DOI: 10.11820/dlkxjz.2011.07.007

Abstract

Permafrost is thermally defined as the ground where temperatures have remained at or below 0℃ for a period of at least two consecutive years. Ground temperatures at depth were a valid index to make knowledge of permafrost thermal regimes and permafrost development at certain locations. Based on 39 borehole data, drilled in the summers of 2007 and 2009 at different elevations with representatives of surface characteristics of topography, geomorphology, landcover, vegetation and soil water content, and the measured ground temperatures in the source region of Datong River in the northeast Qilian Mountains, the characteristics of ground temperatures at depth at the drilling sites were analyzed using the temperature profiles, and the main factors controlling permafrost temperatures and distribution in the study area were primarily summarized. Elevation and the elevation- dependant MAAT (mean annual air temperature) determined the climate settings of the region and the macro-scale permafrost distribution and temperatures patterns, and thus were the first-order factors affecting permafrost temperatures in the source region. In the local- or micro-scale areas in low- and mid-elevation zones (elevation generally lower than 3800 m), however, the landcover conditions (vegetated area, bare ground or exposed rock), the vegetation type (the alpine meadow or the swampy alpine meadow), and the topsoil water content (saturation or oversaturation) had some important impacts on permafrost temperatures, which could affect the permafrost occurrence at certain locations and lead to the spatial differentiation of permafrost distribution. In high-elevation zones (elevation usually exceeds 4000 m), elevation alone could determine the presence of permafrost, and the local factors had effects on the gradient of permafrost temperatures with depth. The result could be as the basis of understanding the permafrost stability, and permafrost change or degradation under the climatic warming, also could provide the knowledge to the relevant studies of climatic changes, ecology, and hydrology in cold regions.

参考文献

[1] 邱国庆, 刘经仁, 刘鸿绪. 冻土学词典. 兰州: 甘肃科学技术出版社, 1994.

[2] Associate Committee on Geotechnical Research(ACGR). Glossary of Permafrost and Related Ground-ice Terms: Technical Memorandum, 1988.

[3] 程国栋. 我国高海拔多年冻土地带性规律之探讨. 地理学报, 1984, 39(2): 185-193.

[4] Brown R J E, Péré T L. Distribution of permafrost in North America and its relationship to the environment, a review, 1963-1973//Fourth International Conference on Permafrost: National Academy of Sciences, Washington, D.C. Publication, 1973: 136-141.

[5] Dingman S L, Koutz F R. Relations among vegetation, permafrost, and potential insolation in central Alaska. Arctic and Alpine Research, 1974, 6(1): 37-42.

[6] Haeberli W. Special aspects of high mountain permafrost methodology and zonation in the Alps. Third International Conference on Permafrost, Ottawa: National Research Council, 1978: 379-384.

[7] Guo P F, Cheng G D. Zonation and formation history of permafrost in Qilian mountains of China. Fourth International Conference on Permafrost, Washington D.C., 1983: 395-400.

[8] King L. Zonation and ecology of high mountain permafrost in Scandinavia. Geografiska Annaler, 1986, 68(3): 131-139.

[9] 程国栋. 局地因素对多年冻土分布的影响及其对青藏铁路设计的启示. 中国科学: D辑, 2003, 33(6): 602-607.

[10] 王绍令, 丁永建, 赵林, 等. 青藏高原局地因素对近地表层地温的影响. 冰川冻土, 2002, 2(1): 85-89.

[11] 吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系. 冰川冻土, 2003, 25(3): 250-255.

[12] 金会军, 孙立平, 王绍令, 等. 青藏高原中、东部局地因素对地温的双重影响(Ⅰ): 植被和雪盖. 冰川冻土, 2008, 30(4): 535-545.

[13] 吕兰芝, 金会军, 孙立平, 等. 青藏高原中、东部局地因素对地温的双重影响(Ⅱ): 砂层和水被. 冰川冻土, 2008, 30(4): 546-555.

[14] 尹泽生, 徐叔鹰. 祁连山区域地貌与制图研究. 北京: 科学出版社, 1992.

[15] 张家诚, 林之光. 中国气候. 上海: 上海科学技术出版社, 1985:120-127.

[16] 陈桂琛, 彭敏, 黄荣福, 等. 祁连山地区植被特征及其分布规律. 植物学报, 1994, 36 (1): 63-92.

[17] 张忠孝. 青海地理. 青海: 青海人民出版社, 2004.

[18] Etzelmüller B, Hoelzle M, Heggem E S F, et al. Mapping and modelling the occurrence and distribution of mountain permafrost. Norwegian Journal of Geography, 2001, 55(4): 186-194.

[19] Harris C, Arenson L U, Christiansen H H, et al. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science Reviews, 2009, 92(3-4): 117-171.

[20] 程国栋. 中国区域冻土研究的回顾和展望. 冰川冻土, 1988, 10(3): 296-299.
文章导航

/