人口与城市发展

基于多智能体的城市人口分布动态模拟与预测

展开
  • 1. 中南大学信息物理工程学院|长沙410083; 2. 湖南师范大学资源与环境科学学院|长沙410081;
    3. 装甲兵工程学院|北京100072
肖洪(1964-)|女|副教授|硕士生导师|主要研究方向为GIS应用与开发。 E-mail:xhmoon@sina.com

网络出版日期: 2010-03-25

基金资助

湖南省重点学科建设项目(2008001)

The Dynamic Simulation and Forecast of Urban Population Distribution Based on the Multi-agent System

Expand
  • 1. School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083, China; |
    2. College of Resources and Environment Science, Hunan Normal University, Changsha 410081, China

Online published: 2010-03-25

摘要

城市人口分布变化过程是复杂的动态系统,掌握其规律在城市规划和社会可持续发展中有重要意义。用相互作用的多智能体系统(MAS)、元胞自动机(CA)环境及城市人口密度模型构建精确到街道的城市人口分布模型,并以长沙为例,分析城市人口分布的演变过程,为相关的调控提供决策依据。研究结果表明,其模拟的城市人口分布格局与实际情况吻合较好,在多种因素的影响下,长沙市将形成“市中心人口快速增长,近郊区人口缓慢增长,沿湘江畔、沿五一大道及岳麓区高新技术开发区人口密集”的发展格局。与以往的模型进行相比,所获得的模拟结果精度更高,更接近于实际的空间分布格局。

本文引用格式

肖洪1,2|田怀玉2|朱佩娟2|于桓凯3 . 基于多智能体的城市人口分布动态模拟与预测[J]. 地理科学进展, 2010 , 29(3) : 347 -354 . DOI: 10.11820/dlkxjz.2010.03.014

Abstract

The changing process of urban population distribution is a complicated dynamic system, so to learn its law is of great significance in urban planning and social sustainable development. Taking the interaction of the multi-agent system (MAS), cellular automata (CA) environment and urban population density model to build the urban population distribution model which can be accurate to the streets, this paper analyzes the process of urban population distribution in Changsha so as to provide a decision-making basis for related regulation. The research results show that the simulation of urban population distribution pattern is in agreement with the actual situations. Under the influence of various factors, Changsha’s population development will follow such a pattern: the downtown population grows rapidly while the suburban population increases slowly, and along the Xiangjiang river bank, the Wuyi road and the Yuelu high-tech development zone, the population will get very dense. Compared with the previous model, the simulation results obtain a higher precision, and therefore are much closer to the actual spatial distribution pattern.

参考文献


[1]  Clark C. Urban population densities. Journal of Royal Statistical Society, 1951, 114: 490-496.

[2]  Naroll R S, Bertalanffy L von. The principle of allometry in biology and the social sciences. General Systems Yearbool, 1956, 1: 76-89.

[3]  Stewart J Q, Warntz W. Physics of population distribution. Joural of Regional Science, 1958, 1: 99-123.

[4]  Sherrantt G G. A model for general urban growth//Churchman C W, Verhulst M. Management Sciences, Model and Techniques:Proceedings of the Sixth International Meeting of Institute of Management Sciences(Vol. 2). Elmsford, N. Y: Pergamon Press, 1960: 147-159.

[5]  Tanner J C. Factors affecting the amount travel. RoadResearch Technical Paper No. 51, HMSO(Department of Scientific and Industrial Research). London, 1961.

[6]  Smeed R J. The traffic problem in towns. Manchester Statistical Society Papers. Manchester: Norbury Lockwood, 1961.

[7]  Newling B E. The spatial variation of urban population densities. Geographical Review, 1969, 59: 242-252.

[8]  冯健, 周一星. 近20年来北京都市区人口增长与分布. 地理学报, 2003, 58(6): 903-916.

[9]  谢守红, 宁越敏. 广州市人口密度分布及演化模型研究. 数理统计与管理, 2006, 25(5): 518-522.

[10]  景楠. 基于多智能体与GIS的城市人口分布预测研究. 广州: 中国科学院广州地球化学研究所, 2007.

[11]  Monticino M, Miguel A, Baird C, et al. Coupled human and natural systems: A multi-agent-based approach.Enviromental Modelling & Software,2006: 1-8.

[12]  Ligtenberg A, Bregt A K, Lammeren R V. Multi-actor-based land use modeling:Spatial planning using agents. Land Use and Urban Planning, 2001, 56: 21-33.

[13]  Ligtenberg A, Wachowicz M, Bregt A K, et al. A design and application of a multi-agent system for simulation of multi-actor spatial planning. Journal of Environmental Management,2004, 72(1/2): 43-55.

[14]  Bennenson I. Multi-agent simulations of residential dynamics in the city. Computers,Environment and UrbanSystems,1998,22(1): 25-42.

[15]  Bennenson I Omer I,Portugali J. An agent-based model of residential mobility in the Tel-Aviv metropolitan area//Proceedings of the 4th International Conference on GeoComputation, Mary Washington College, Fredericksberg, Virginia, USA, 25-28 July 1999. Greenwich: GeoComputation CD-ROM: 92-99.

[16]  Bennenson I,Omer I,Hatna E. Entity-based modeling of urban residential dynamics: The case of Yaffo, Tel Aviv.Environment and Planning B, 2002, 29: 491-512.

[17]  杨青生,黎夏. 多智能体与元胞自动机结合及城市用地扩张模拟. 地理科学, 2007, 27(4): 542-548.

[18]  金君, 李成名, 印洁, 等. 人口数据空间分布化模型研究. 测绘学报, 2003, 32(3): 278-282.

[19]  Donnelly. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. http://imagethelancetcom/extras/03art4453webpdf, Published online May 7, 2003.

[20]  Wu W Y, Chen S P. A prediction method using the grey model GMC(1,n)combined with the grey relational analysis: A case study on Internet access population forecast. Applied Mathematics and Computation, 2005, 169(1):  198-217.

[21]  Walmsley D J,Lewis G J. Human Geography:Behavioral Approaches. New York: Longman, 1984.

[22]  McFadden D. Conditional Logit Analysis of Qualitative Choice Behavior//Zarembka P //Frontiersin Econometrics. New York: Academic Press, 1974: 105-142.

[23]  McFadden D. Modeling the choice of residential location in spatial interaction theory and planning models//Karlqvist A,Lundqvist L,Snickars F et al.//Spatial Interaction Theory and Planning Models. Amsterdam: North Holland Press, 1978: 75-96.

[24]  刘小平, 黎夏, 叶嘉安. 基于多智能体系统的空间决策行为及土地利用格局演变的模拟. 中国科学: D辑, 2006, 36(11): 1027-1036.

[25]  刘小平, 黎夏. 从高维特征空间中获取元胞自动机的非线性转换规则. 地理学报, 2006, 61(6): 663-672.

[26]  刘小平, 黎夏, 叶嘉安, 等. 利用蚁群智能挖掘地理元胞自动机的转换规则. 中国科学: D辑, 2007, 37(6): 824-834.

[27]  张鸿辉, 曾永年, 金晓斌, 等. 多智能体城市土地扩张模型及其应用. 地理学报, 2008, 63(8): 869-881.

文章导航

/