环境与生态

青藏高原中东部植被覆盖对水热条件的响应研究

展开
  • 1. 中国科学院地理科学与资源研究所, 北京 100101|
    2. 中国科学院研究生院, 北京 100409
张文江(1976-),男,中国科学院地理科学与资源研究所博士研究生,主要从事土地覆盖变化及其驱动因子分析等领域研究,已发表学术论文4篇。E-mail: Zhangwj.04b@igsnrr.ac.cn

收稿日期: 2005-06-01

  修回日期: 2005-08-01

  网络出版日期: 2005-09-25

基金资助

国家自然科学基金项目(编号:40471097)和国家973计划“中国陆地生态系统碳循环及其驱动机制研究” (编号:2002CB412507) 资助。

Study on The Response of Vegetation Cover to Precipitation and Temperature in Central/East Tibetan Plateau

Expand
  • 1. Institute of Geographical Sciences and Natural Resources Research, CAS, Beijing 100101, China|
    2. Graduate School, Chinese Academy of Sciences, Beijing 100049, China

Received date: 2005-06-01

  Revised date: 2005-08-01

  Online published: 2005-09-25

摘要

植被覆盖的变化常是自然因子和人类活动的综合作用,分析植被对水热条件的响应关系有助于认识人类活动在地表植被变化中的作用程度。本文旨在结合1982~2000年地面气象观测资料和NOAA卫星的AVHRR 植被指数(8km),对气象站点分布相对密集的青藏高原中东部的NDVI(归一化植被指数)空间变化同水热条件的响应关系进行分析。通过水热有关指标的趋势面模拟、植被类型比较和样带分析,表明:在青藏高原中东部地区,水热条件组合较好(如常绿针叶林)或较差(如荒漠半荒漠)的区域,多年平均的NDVI旬值同水热条件的相关性不强;而范围广阔的水热条件组合中等区域(如高山草甸/草原)同水热条件相关性很高;青藏高原周边区域植被对水热条件相对不敏感,而高原主体部分植被覆盖同水热的相关性则很高(0.75以上);此外,海拔对热量条件影响很大,进而影响植被覆盖。

本文引用格式

张文江, 高志强 . 青藏高原中东部植被覆盖对水热条件的响应研究[J]. 地理科学进展, 2005 , 24(5) : 13 -22 . DOI: 10.11820/dlkxjz.2005.05.002

Abstract

The Tibetan Plateau is among the few extensive regions remoted from human disturbance, and provides an ideal site to study the response of vegetation cover to water/thermal conditions (WTC), esp. the response of natural vegetation. Therefore, this paper focuses on the spatial variation and then relations of water/thermal climate elements and NDVI (Normalized Difference Vegetation Index, AVHRR NDVI product of 8km) from year 1982 to 2000, mainly in central and east Tibetan Plateau where the gauge is basically dense enough to qualify related analyses. In the study, to investigate the relationships between spatial variation of water/thermal conditions and multi-year mean NDVI, trend surfaces of N (short for NDVI), P (short for precipitation), N-P relation and N-T relation are simulated, transects of four directions are designed and vegetation types are compared by group. The relation differences of N-P and N-T are respectively investigated, both spatially and biologically.   According to our study, following conclusions are reached: a) Climate elements: Ten-day mean NDVI of certain region in Tibetan Plateau is influenced less by the water and thermal climate elements if the vegetation cover is evergreen dense or totally sparse. On the other hand, temperate WTC (thus vegetation cover of temperate density) tends to have stronger relationship with NDVI than extreme conditions. b) Spatial variation: As indicated by transect analysis and trend surface simulation, the relation values of peripheral Plateau are low (often because of extreme WTC and thus extreme vegetation cover) while the values of main plateau body are over 0.75 (because of temperate WTC and thus temperate vegetation cover). c) Zonality: Since altitude plays an important role in the distribution of thermal condition in Tibetan Plateau, annual NDVI bears a abvious vertical zonality while the horizontal zonalities are not so distinct. In addition, the relations of NDVI with precipitation and temperature have no clear zonal characteristics.

参考文献


[1] 张镱锂, 张 玮, 摆万奇 等. 青藏高原统计数据分析——以人口为例. 地理科学进展, 2005, 24(1): 11~21.

[2] Ehrlich D, Estes J E, Singh A. Applications of NOAA-AVHRR 1 km data for environmental monitoring. IJRS, 1994, 15: 145~161.

[3] Eklundh L. Estimating relation between AVHRR NDVI and rainfall in East Africa at 10-day and monthly time scales. IJRS, 1998, 19(3): 563~568.

[4] 牛亚菲. 青藏高原生态环境问题研究. 地理科学进展. 1999, 18(2): 163~171.

[5] 莫申国, 张百平, 程维明等. 青藏高原的主要环境效应. 地理科学进展. 2004,23(2): 88~96.

[6] 潘保田, 李吉均, 陈发虎. 青藏高原: 全球气候变化的驱动力与放大气(I 新生代气候变化的基本特征). 兰州大学学报(自然科学版). 1995, 31(3): 120~128.

[7] 吴国雄, 毛江玉, 段安民, 张琼. 青藏高原影响亚洲夏季气候研究的最新进展. 气象学报. 2004, 62(5): 528~540.

[8] 赵昕奕, 张惠远, 万 军. 青藏高原气候变化对气候带的影响. 地理科学. 2002, 22(2): 190~195.

[9] Potter C S, V Brooks. Global analysis of empirical relations between annual climate and seasonality of NDVI . IJRS, 1998, 19(15): 2921~2948.

[10] Richard Y, I Poccard. A statistical study of NDVI sensitivity to seasonal and intern annual rainfall variations in Southern Africa. IJRS, 1998, 19(15): 2907~2920.

[11] 王正兴, 刘 闯, HU ETE Alfredo. 植被指数研究进展: 从AVHRR-NDVI到MODIS-EVI. 生态学报. 2003, 23(5): 979~987.

[12] James M E, Kalluri S N V. The Pathfinder AVHRR land data set: An improved coarse resolution data set for terrestrial monitoring. IJRS, 1994, 15: 3347~3363.

[13] 刘纪远, 布和敖斯尔. 中国土地利用变化现代过程时空特征的研究. 第四纪研究. 2000, 20(3): 229~240.

[14] Townshend J R G, J ustice C, Li W, Gurney C, McManus J. Global land cover classification by remote sensing: Present capabilities and future possibilities. RS Env., 1991, 35: 234~255.

[15] Townshend J R G. Global data sets for land applications from the AVHRR: an introduction. IJRS, 1994, 15: 3319~3332.

[16] Eastman J R, Fulk M. Long Time series evaluation using standardized principal components. PERS, 1993, 59: 991~996.

[17] 国家气象信息中心. http://cdc.cma.gov.cn. 2005.

[18] NASA. http://disc.gsfc.nasa.gov. 2005.

[19] 刘纪元, 刘明亮, 庄大方,等. 中国近期土地利用变化的空间格局分析. 中国科学D辑, 2002, 32(12): 1021~1039.

文章导航

/