陆地生态系统碳收支专栏

青藏高原草地生态系统碳收支研究进展

展开
  • 1. 中国科学院地理科学与资源研究所,北京 100101;
    2. 江西师范大学地理与环境学院,南昌 330022

收稿日期: 2011-10-01

  修回日期: 2012-02-01

  网络出版日期: 2012-01-25

基金资助

中国科学院西部行动计划(三期)项目(KZCX2-XB3-08-01);国家自然科学基金项目(40975045);国家重点基础研究发展计划课题(2009CB421105)。

Review on Carbon Budget of the Grassland Ecosystems on the Qinghai-Tibet Plateau

Expand
  • 1. Institute of Geographic Sciences and Nature Resources Research, CAS, Beijing 100101, China;
    2. School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China

Received date: 2011-10-01

  Revised date: 2012-02-01

  Online published: 2012-01-25

摘要

陆地生态系统碳收支仍然是当前全球气候变化研究的重要内容,青藏高原作为全球气候变化的敏感区,使青藏高原草地生态系统在区域碳收支平衡中占有主导地位,但研究方法等不同使得碳收支估算结果存在很大的不确定性。气候变暖在一定程度上提高了高寒草地生态系统的植被初级生产力和生物量,由此补偿了气候变暖导致的土壤有机碳分解释量,使青藏高原草地植被仍然发挥着碳汇的功能。而人类放牧活动对草地生态系统的影响较为复杂。因此,如何区分气候变化和人类活动对生态系统的影响机制,定量评价未来气候变化和人类活动影响下,青藏高原生态系统碳源/汇格局的可能变化,是一个非常重要的研究方向,也是一个极大的挑战。

本文引用格式

王军邦, 黄玫, 林小惠 . 青藏高原草地生态系统碳收支研究进展[J]. 地理科学进展, 2012 , (1) : 123 -128 . DOI: 10.11820/dlkxjz.2012.01.016

Abstract

Terrestrial ecosystem carbon budget is a hot topic in the research on global climate change. The grassland of Qinghai-Tibet Plateau, which is sensitive to climate change, plays an important role in the regional carbon balance. However, there is great uncertainty in the estimation on the spatial-temporal pattern of carbon budget due to different methods and some other reasons. To some extent, climate warming results in the increase of vegetation primary productivity and biomass in the alpine meadow ecosystem, which may compensate the decomposition release of soil organic carbon. Hence, the Qinghai-Tibet Plateau grassland still functions as a carbon sink. The effects of human activities, such as overgrazing, on grassland ecosystems are very complex. Therefore, under the impacts of future climate change and human activities, how to distinguish the influence of climate change from that of human activities on ecosystems, and how to quantitatively assess carbon source / sink pattern, are a very interesting research field, but also a great challenge, especially on the plateau.

参考文献

[1] 曾永年, 冯兆东, 曹广超, 等. 黄河源区高寒草地土壤有机碳储量及分布特征. 地理学报, 2004, 59(4): 497-504.
[2] 赵锦梅. 祁连山东段不同退化程度高寒草地土壤有机碳储量的研究[D]. 兰州: 甘肃农业大学, 2006.
[3] 石福孙, 吴宁, 罗鹏. 川西北亚高山草甸植物群落结构及生物量对温度升高的响应. 生态学报, 2008, 28(11):5286-5293.
[4] 闫淑君, 洪伟. 福建近41 年气候变化对自然植被净第一性生产力的影响. 山地学报, 2001,19(6): 522-526.
[5] 祁彪. 青海环湖地区不同退化程度高寒草地土壤碳储量的研究[D]. 兰州: 甘肃农业大学, 2005.
[6] 樊江文, 钟华平, 梁飚, 等. 草地生态系统碳储量及其影响因素. 中国草地, 2003, 25(6): 51-58.
[7] 汤懋苍, 李存强. 关于青藏高原是气候变化启动区的分析事实. 中国青藏高原研究会第一届学术讨论会论文选. 北京: 科学出版社, 1992.
[8] 冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据. 科学通报, 1998, 43(6): 633-636.
[9] Liu X, Chen B. Climatic warming in the Tibetan plateauduring recent decades. International Journal of Climatology,2000, 20(14): 1729-1742.
[10] 冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据. 科学通报, 1998, 43(6): 633-636.
[11] 姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策. 地球科学进展, 2006, 21(5): 459-463.
[12] 马致远. 三江源地区水资源的涵养和保护. 地球科学进展, 2004, 19(Suppl.): 108-111.
[13] 黄铁青, 赵涛, 冯仁国, 等. 中国科学院西部行动计划(二期)项目布局与初步进展. 地球科学进展, 2007, 22(9):888-895.
[14] 赵新全, 周华坤. 三江源区生态环境退化、恢复治理及其可持续发展. 科技与社会, 2005, 20(6): 471-476.
[15] 刘林山. 黄河源地区高寒草地退化研究: 以达日县为例
[D]. 北京: 中国科学院地理科学与资源研究所, 2006.
[16] 张镱锂, 刘林山, 摆万奇, 等. 黄河源地区草地退化空间特征. 地理学报, 2006, 61(1): 3-14.
[17] 刘纪远, 徐新良, 邵全琴. 近30 年来青海三江源地区草地退化的时空特征. 地理学报, 2008, 63(4): 364-376.
[18] 汪诗平. 青海省“三江源”地区植被退化原因及其保护策略. 草业学报, 2003, 12(6): 1-9.
[19] 王俊峰. 长江源区沼泽与高寒草甸生态系统变化及其碳平衡对全球气候变化的响应[D]. 兰州: 兰州大学,2008.
[20] 王绍强, 周成虎. 中国陆地土壤有机碳库的估算. 地理研究, 1999, 18(4): 349-356.
[21] Fan J, Zhong H, Harris W, et al. Carbon storage in thegrasslands of China based on field measurements ofabove-and below-ground biomass. Climatic Change,2008, 86(3): 375-396.
[22] Olson J S, Watts J A, Allison L J. Carbon in live vegetationof major world ecosystems. Report ORNL-258620.Oak Ridge National Laboratory, Oak Ridge Tennessee,1983: 15-25.
[23] Yang Y H, Fang J Y, Tang Y H, et al. Storage, patternsand controls of soil organic carbon in the tibetan grasslands.Global Change Biology, 2008, 14(7): 1592-1599.
[24] Yang Y H, Fang J Y, Pan Y D, et al. Aboveground biomassin tibetan grasslands. Journal of Arid Environments,2009, 73(1): 91-95.
[25] Yang Y, Fang J, Ma W, et al. Large-scale pattern of biomasspartitioning across china's grasslands. Global Ecologyand Biogeography, 2009, 19(2): 268-277.
[26] 安尼瓦尔·买买提, 杨元合, 郭兆迪, 等. 新疆草地植被的地上生物量. 北京大学学报: 自然科学版, 2006, 42(4): 521-526.
[27] Yang Y H, Fang J Y, Ji C J, et al. Above-and belowgroundbiomass allocation in Tibetan grasslands. Journal of VegetationScience, 2009, 20(1): 177-184.
[28] Piao S, Fang J, Zhou L et al. Changes in biomass carbonstocks in China's grasslands between 1982 and 1999.Global Biogeochemical Cycles, 2007, 21: doi:10.1029/2005GB002634
[29] Ni J. Forage yield-based carbon storage in grasslands ofchina. Climatic Change, 2004, 67(2): 237-246.
[30] Ni J. Carbon storage in grasslands of China. Journal ofArid Environments, 2002, 50(2): 205-218.
[31] Yang Y, Fang J, Smith P, et al. Changes in topsoil carbonstock in the Tibetan grasslands between the 1980s and2004. Global Change Biology, 2009, 15(11): 2723-2729.
[32] Yang Y, Fang J, Tang Y, et al. Storage, patterns and controlsof soil organic carbon in the Tibetan grasslands.Global Change Biology, 2008, 14(7): 1592-1599.
[33] Yang Y, Fang J, Ma W et al. Soil carbon stock and itschanges in northern China's grasslands from 1980s to2000s. Global Change Biology, 2010, doi:10.1111/j.1365-2486.2009.02123.x.
[34] 王宏, 李晓兵, 李霞, 等. 中国北方草原对气候干旱的响应. 生态学报, 2008, 28(1): 172-182.
[35] 田玉强, 欧阳华, 宋明华, 等. 青藏高原样带高寒生态系统土壤有机碳分布及其影响因子. 浙江大学学报: 农业与生命科学版, 2007, 33(4): 443-449.
[36] 中国青藏高原研究会编著. 2009-2010 青藏高原研究学科发展报告. 中国科学技术协会主编. 中国科协学科发展研究系列报告. 北京: 中国科学技术出版社, 2010:161-162.
[37] 石福孙, 陈华峰, 吴宁. 增温对川西北亚高山高寒草甸植物群落碳, 氮含量的影响. 植物研究, 2008, 28(6):730-736.
[38] 于海英, 许建初. 气候变化对青藏高原植被影响研究综述. 生态学杂志, 2009, 28(4): 747-754.
[39] 李娜, 王根绪, 高永恒, 等. 青藏高原生态系统土壤有机碳研究进展. 土壤, 2009, 41(4): 512-519.
[40] 李月臣, 宫鹏, 刘春霞, 等. 北方13 省1982 -1999 年植被变化及其与气候因子的关系. 资源科学, 2006, 28(2):109-117.
[41] 石福孙, 吴宁, 吴彦, 等. 模拟增温对川西北高寒草甸两种典型植物生长和光合特征的影响. 应用与环境生物学报, 2009, 15(6): 750-755.
[42] 李英年, 赵新全, 曹广民, 等. 海北高寒草甸生态系统定位站气候, 植被生产力背景的分析. 高原气象, 2004, 23(4): 558-567.
[43] 李英年, 张景华. 祁连山区气候变化及其对高寒草甸植物生产力的影响. 中国农业气象, 1997, 18(2): 29-32.
[44] 李英年, 王启基. 气候变暖对高寒草甸气候生产潜力的影响. 草地学报, 2000, 8(1): 23-29.
[45] 王根绪, 胡宏昌, 王一博, 等. 青藏高原多年冻土区典型高寒草地生物量对气候变化的响应青藏高原多年冻土区典型高寒草地生物量对气候变化的响应. 冰川冻土,2007, 29(5): 671-679.
[46] Piao S, Fang J, He J. Variations in vegetation net primaryproduction in the Qinghai-Xizang plateau, China, from1982 to 1999. Climatic Change, 2006, 74(1): 253-267.
[47] 刘育红, 李希来, 李长慧, 等. 三江源区高寒草甸湿地植被退化与土壤有机碳损失. 农业环境科学学报, 2009,28(12): 2559-2567.
[48] 王根绪, 程国栋, 沈永平. 青藏高原草地土壤有机碳库及其全球意义. 冰川冻土, 2002, 24(6): 693-700.
[49] 王俊峰, 王根绪, 吴青柏. 青藏高原腹地不同退化程度高寒沼泽草甸生长季节CO2排放通量及其主要环境控制因子研究. 冰川冻土, 2008, 30(3): 408-414.
[50] 孙步功. 黄河源区不同退化程度高寒草地CO2, CH4通量研究[D]. 兰州: 甘肃农业大学, 2008.
[51] 孔郑. 黄河源区“黑土型”退化高寒草地CO2, CH4排放特征研究[D]. 兰州: 甘肃农业大学, 2007.
[52] 王长庭, 龙瑞军, 王启兰, 等. 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化. 应用与环境生物学报, 2008, 14(2): 225-230.
[53] Wang W, Wang Q, Lu Z. Soil organic carbon and nitrogencontent of density fractions and effect of meadowdegradation to soil carbon and nitrogen of fractions in alpineKobresia meadow. Science in China Series D: EarthSciences, 2009, 52(5): 660-668.
[54] Wang Q, Shixiong L, Zengchun J, et al. Response of carbonand nitrogen content in plants and soils to vegetationcover change in alpine Kobresia meadow of the source regionof Lantsang, Yellow and Yangtze rivers. Acta EcologicaSinica, 2008, 28(3): 885-894.
[55] 王文颖, 王启基, 鲁子豫. 高寒草甸土壤组分碳氮含量及草甸退化对组分碳氮的影响. 中国科学: D 辑, 2009:647-654.
[56] Su Y Z, Li Y L, Cui J Y, et al. C et al. Influences of continuousgrazing and livestock exclusion on soil propertiesin a degraded sandy grassland, Inner Mongolia, northernChina. Catena, 2005, 59(3): 267-278.
[57] 张芳, 王涛, 薛娴, 等. 不同沙漠化程度高寒草甸的土壤理化性质特征. 干旱区资源与环境, 2009, 23(8):155-159.
[58] Wang Y, Zhou G, Jia B. Modeling SOC and NPP responsesof meadow steppe to different grazing intensities innortheast China. Ecological modelling, 2008, 217(1-2):72-78.
[59] 高超. 东祁连山不同退化程度高寒草甸草原土壤有机质特性及其对草地生产力的影响[D]. 兰州: 甘肃农业大学, 2007.
[60] 王小利. 青海湖地区不同退化程度高寒草地植物量及光能转化效率的研究[D]. 成都: 四川农业大学, 2005.
[61] Xu L, Zhang X, Shi P, et al. Characteristics of net ecosystemcarbon dioxide exchange (NEE) from August to Octoberof alpine meadow on the Tibetan plateau, China.Frontiers of Biology in China, 2006, 1(4): 418-422.
[62] 高永恒. 不同放牧强度下高山草甸生态系统碳氮分布格局和循环过程研究[D]. 中国科学院研究生院(成都生物研究所), 2007.
[63] 仁青吉, 崔现亮, 赵彬彬. 放牧对高寒草甸植物群落结构及生产力的影响. 草业学报, 2008, 17(6): 134-140.
[64] 田汉勤. 陆地生物圈动态模式:生态系统模拟的发展趋势. 地理学报, 2002, 57(4): 379-388.
[65] Li H and Wu J. Uncertainty analysis in ecological studies:an overview. In: Wu J, Jones K B, Li H, et al. eds.Scaling and uncertainty analysis in ecology: methods andapplications. Dordrect, Netherlands: Springer, 2006.43-64.
[66] Lemoine J M, 陈吉泉. 生态学的时空特性. 植物生态学报, 2003, 27(1): 1-10.
[67] Wu J, Hobbs R. Key issues and research priorities in landscapeecology: An idiosyncratic synthesis. LandscapeEcology, 2002, 17(4): 355-365.
[68] 曹明奎, 于贵瑞, 刘纪远, 等. 陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟. 中国科学: D 辑,2004, 34(Supl. II): 1-14.
文章导航

/