气候变化与环境

植物稳定同位素研究进展与展望

展开
  • 1. 中国科学院地理科学与资源研究所, 北京100101|
    2. 中国科学院青藏高原研究所, 北京100085|
    3. 中国科学院研究生院, 北京100049
吴绍洪( 1961- )| 男, 研究员, 博士生导师, 主要从事陆地表层格局与全球变化研究. E- mail: wush@igsnrr.ac.cn

收稿日期: 2006-03-01

  修回日期: 2006-05-01

  网络出版日期: 2006-05-25

基金资助

国家重点基础研究发展(973)计划( 编号: 2003CB415101) .

The Progr ess and Prospect of Stable Isotopes in Plants

Expand
  • 1. Institute of Geographical Sciences and Natural Resources Research, CAS Beijing, 100101|
    2. Institute of Tibetan Plateau Research, CAS Beijing 100085|
    3. Graduate University of the Chinese Academy of Sciences, Beijing, 100049

Received date: 2006-03-01

  Revised date: 2006-05-01

  Online published: 2006-05-25

摘要

植物稳定同位素是近年来在地理学、生态学研究中逐步广泛应用的研究手段, 具有综合长 期生物地球化学过程和联系不同系统成分的特点, 国际上已经展开了较为广泛的应用, 国内也有 相关研究。本文对国内外植物C、H、O 稳定同位素研究的回顾, 显示植物稳定同位素与环境因子, 如气温、湿度、降水、环境稳定同位素组成等密切相关。目前植物稳定同位素技术主要应用于历史 时期环境气候的重建, 恢复大气CO2 同位素组成以及CO2 浓度的变化趋势。本文根据植物稳定同 位素的特点和研究基础, 认为植物稳定同位素方法不仅可以用来重建历史时期气候, 而且在区域 环境差异及其生态效应研究上有着重要应用前景。

本文引用格式

吴绍洪,潘韬,戴尔阜 . 植物稳定同位素研究进展与展望[J]. 地理科学进展, 2006 , 25(3) : 1 -11 . DOI: 10.11820/dlkxjz.2006.03.001

Abstract

Stable isotopes in plants are widely applied in geographical and ecological studies in the recent years internationally, which combine long- term biogeochemical process and integrate different systemic components. Researches on stable isotopes of plants aim at studying temporal and spatial information of environmental factors, and revealing the trends of climate change and the geographical distribution characteristic. Abundant environmental and climatic information is recorded by stable isotopes in plants, such as information on temperature, humidity, precipitation and environment isotopes composition. The latest progresses over the world are reviewed in this paper, including the basic theories, research methods and main application areas. Review of researches on stable isotopes in plants on national and international literatures shows that stable isotopes in plants have close relation with environmental factors. The technology of stable isotopes in plants is mostly used to rebuild historical climate series, and recovers isotopes composition and concentration trends of CO2 in the atmosphere. Analysis of the features of isotopes in plants indicates that stable isotopes in plants could not only be applied to studying climate change, but also to detect regional environmental differences which has an important future for application. Study shows that the 18O in plants came only from H2O. Therefore, the origin of vapor in plants is one of the most important factors of the δ18O composition in plant, especially in typical monsoon regions. So it is possible to estimate the respective affected areas of different monsoons, and to study the spatial pattern of monsoon climate.

参考文献


[1] 吴祥定, 树木年轮与气候变化. 北京: 气象出版社, 1999.

[2] McCarroll D, Loader N J. Stable istopes in tree rings. Quaternary Science Reviews, 2004, 23: 771~801.

[3] Farmer J G, Baxter MS. Atmosphere carbon dioxide levels as indicated by the stable isotope record in wood Nature, 1974, 247: 273~275.

[4] Francey R J, Allison CE, Etheridge D M. A 100- year high precision record of δ13C in atmospheric CO2. Tellus, 1999, 51B: 170~193.

[5] Libby L M, Pandolfi L J. Temperature dependence of, isotope ratios in tree rings. Proceedings of the National Academy of Science, 1974, 71: 2482~2486.

[6] Schiegl W E. Climatic significance of deuterium abundance in growth rings of Picea. Nature, 1974, 256: 582~585.

[7] Epstein S, Yapp C J. Climatic implication of the D/H ratio of hydrogen in C- H groups in tree cellulose. Earth Planet Sci Lett, 1976, 30: 252~261.

[8] Gray J, Thompson P. Climatic information from 18O/16O ratios of cellulose in tree- rings. Nature, 1976, 262: 481~482.

[9] Pearman G I, Francey R J, Franser P J B. Climatic implications of stable isotopes in tree rings. Nature, 1976, 260 (771~ 773).

[10] Libby L M, Pandolfi L J, Payton P H, Marshall III J, Becker B. Giertz- Siebenlist, V., Isotopic tree thermometers. Nature, 1976, 261: 284~290.

[11] Dawson T E, Mambelli S, Plamboeck A H, Templer P H, Kevin P T. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst., 2002, 33: 507~559.

[12] White J W C. Stable hydrogen isotope ratios in plants: a review of current theory and some potential application, in Stable Isotopes in Ecological Research, W. Rundel, Ehleringer J R, Nagy K A, Editor. 1988, Springer~Verlag, 142~162.

[13] Stuiver M, Braziunas T F. Tree cellulose 13C12C isotope ratios and climate change. Nature, 1987, 328: 58~60.

[14] Sternberg L S L. Oxygen and hydrogen isotopes in plant cellulose: mechanisms and application, in Stable Isotopes in Ecological Research. 1989, Springer: New York, 124 ~141.

[15] Saurer M, Siegwolf R, Borella S, Schweingruber F. Environmental information from stable isotopes in tree rings of Fagus sylvatica, in The Impacts of Climate Variability on Forests, M. Beniston, Innes, J.L., Editor. 1998, Springer: Berlin. 241~ 253.

[16] Roden J S, Lin G, Ehleringer J R. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in treering cellulose. Geochimica et Cosmochimica Acta, 2000, 64: 21~35.

[17] Lipp J T , Fritz. Stable isotopes in tree ring cellulose and climatic change. Tellus, 1991, 43B: 320~330.

[18] 刘禹, 刘荣谟, 孙福庆, 树轮稳定碳同位素与全球变化研究. 地球科学进展, 1989, (6): 47~52.

[19] 李正华, 刘荣谟, 安芷生, 吴祥定, 刘禹. 工业革命以来大气CO2 浓度不断增加的树轮稳定碳同位素证据. 科学通报, 1994, 39(23): 2172~2174.

[20] 郑成华, 沈承德, 于津生. 两个树轮样品的13C 同位素研究及其古气候意义. 地球化学, 1994, 23: 210~216.

[21] 李正华, 刘荣谟, 安芷生, 吴祥定, 刘禹, Leavitt SW, Hughes M K. 树木年轮δ13C 季节性变化及其气候意义. 科学通 报, 1995, 40(22): 2064~2067.

[22] 张庆乐, 刘卫国, 刘禹, 宁有丰, 文启彬. 贺兰山地区树轮碳氧同位素与夏季风降水的相关性讨论. 地球化学, 2005, 34(1): 51~56.

[23] 孙艳荣, 穆治国, 崔海亭, 埋藏古木树轮碳、氢、氧同位素研究与古气候重建. 北京大学学报, 2002, 38(2).

[24] Gray J, Thompson. Natural variations in the 18O content of cellulose. in Carbon Dioxide Effects: Research and Assessment Program, Proceedings of the International Meeting on Stable Isotopes in Tree- ring Research. 1980, New York.

[25] Farquhar G D, O'Leary M H, Berry J A. On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 1982, 9: 121~137.

[26] Hayes J M. An introduction to isotopic measurements and terminology. Spectr, 1982, 8: 3~8.

[27] Gray J, Song S J. Climatic implications of the natural variations of D/H ratios in tree ring cellulose. Earth Planet Sci Lett, 1984, 70: 129~138.

[28] Edwards T W D, Aravena RO, Fritz. Interpreting paleoclimate from 18O and 2H in wood cellulose: comparison with evidence from fossil insects and relict permafrost in Southwester Ontario. Can J Earth Sci, 1985, 22: 1720~1726.

[29] White J W C, Cook E R, Lawrence J R. The D/H ratios of sap in trees: implications for water sources and tree ring D/H ratios. Geochim Cosmochim Acta, 1985, 49(1): 237~246.

[30] Leavitt S W, Long A. Trends of 13C/12C ratios in pinyon tree rings of the American southwest and the global carbon cycle. Radiocarbon, 1986, 28: 376~382.

[31] Sternberg L, De Niro M, Savidge R. Oxygen isotope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis. Plant Physiology, 1986, 82: 423~427.

[32] Saurer M, Siegenthaler V. 13C/12C isotope ratios in trees are senstive to relative humidity. Dendrochronologia, 1989, 7:9~13.

[33] 李培泉, 康兴伦, 海水中的18O/16O 比值及其应用. 海洋科学, 1988, (6): 44~47.

[34] White J W C, Lawrence J R, Broecker WS. Modeling and interpreting D/H ratios in tree rings: A test case of white pine in the northwestern United States. 1994, 58: 851~862.

[35] Barbour MM, Andrews T J, Farquhar G D. Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Australian Journal of Plant Physiology, 2001, 28: 335~348.

[36] Anderson W T, Bernasconi S M, McKenzie J A, Saurer M, Schweingruber F. Model evaluation for reconstructing the oxygen isotopic composition in precipitation from tree ring cellulose over the last century. Chemical Geology, 2002, 182: 121~137.

[37] Feng X, Cui H, Tang K, Conkey L E. Tree- Ring δD as an indicator of Asian monsoon intensity. Quaternary Research, 1999, 51: 262~266.

[38] Tang K, Feng X, GreGory J Ettl. The variations in δD of tree rings and the implications for climatic reconstruction. Geochimical et Cosmochimica Acta, 2000, 60: 1663~1673.

[39] Barbour M M, Walcroft A S, Farquhar G D. Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment, 2002, 25: 1483~1499.

[40] DeNiro M J, Epstein S. Relationship between oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide and water. 1979.

[41] 刘广深, 米家榕, 戚长谋, 杨春雷, 树轮稳定碳同位素研究的应用现状与发展趋势. 世界地质, 1996, 15(4): 42~48.

[42] Farquhar G D, Lloyd J. Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere, in Stable Isotopes and Plant Carbon–Water Relations, J.R. Ehleringer, Hall, A.E., Farquhar, G.D., Editor. 1993, Academic Press: New York, 47~70.

[43] Wershaw RL. Hydrogen isotope fractionation in water passing through trees, in Advances in Organic Geochemistry, F. Hobson, Speers, M., Editor. 1966, Pergamon: New York, 55~67.

[44] Saurer M, Robertson I, Siegwolf R, Leuenberger M. Oxygen isotope analysis of cellulose: an interlaboratory comparison. Analytical Chemistry, 1998a, 70: 2074~2080.

[45] Ehleringer J R, Dawson T E. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environment, 1992, 15: 1073~1082.

[46] Craig H, Gordon L I. Deuterium and oxygen - 18 variations in the ocean and marine atmospheres, in Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures, E. Tongiorgi, Editor. Lischi and Figli, Pisa: Italy, 1965, 9~130.

[47] Dongmann G, Nornberg, H W, Forstel H, Wagener K. On the enrichment of H2 18O in leaves of transpiring plants. Radiation, Environment and Biophysiology, 1974, 11: 41~52.

[48] Mazany T, Leman J C, Long A. Carbon- 13 in tree ring cellulose as an indicator of past climates. Nature, 1980, 187: 432~ 435.

[49] Yapp C J, Epstein S. A reexamination of cellulose carbon- bound hydrogen δD measurements and some factors affecting plant water D/H relationships. Geochimica et Cosmochimica Acta, 1982, 46: 955~965.

[50] Hemming D L, Switsur V R, Waterhouse J S. Climate variation and the stable carbon isotope composition of tree - ring cellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris. Tellus, 1998, 50B: 25~33.

[51] Freyer H D, Belacy N. 13C/12C records in northern hemispheric trees during the past 500 years- anthropogenic impact and climatic superpositions. J. Geophys. Res, 1983, 88: 6844~6852.

[52] Leavitt S W, Long A. An atmospheric δ13C reconstruction generated through removal of climate effects from tree - ring measurements. Tellus, 1983, 65(87~89).

[53] Saurer M, Siegenthaler V. The climate- carbon isotope relationship in tree rings and the significance of site conditions. Tellus, 1995, 47B: 320~330.

[54] Lawrence J R, White J W. Growing season precipitation from D/H ratios of Eastern White Pine. Nature, 1984, 311: 558~ 560.

[55] Ramesh R, Bhattacharya S K, Gopalan K. Climatic correlations in the stable isotope records of silver fir (A biespind row) tree from Kashmir, India. Earth Planet Sci Lett, 1986, 79: 66~74.

[56] Craig H. Carbon- 13 variations in Sequoia rings and the atmosphere. Science, 1954, 119: 141~144.

[57] Friedli H, Lotscher H, Stauffer B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature, 1986, 324: 237~238.

[58] Feng X, Epstein S. Climatic trends from isotopic records of tree rings: the past 100~200 years. Climatic Change, 1996, 33: 551~562.

[59] Epstein S, Mayeda T. Variation of 18O content of waters from natural sources. Geochimica et Cosmochimica Acta, 1953, 4 (5): 213~224.

[60] 郑永飞, 陈江峰, 稳定同位素地球化学. 北京: 科学出版社, 2000, 146~152.

文章导航

/