生态与环境变化

辽东半岛黄土粒度分维特征及其环境意义

展开
  • 辽宁师范大学城市与环境学院|大连 116029

网络出版日期: 2010-01-25

基金资助

国家自然科学基金项目(40571016);辽宁省教育厅高等学校科学研究项目(20060467)

Grain-size Fractal Dimension of Loess and Its Environmental Significance in the Peninsula of East Liaoning

Expand
  • College of Urban Environmental Sciences, Liaoning Normal University, Dalian 116029, Liaoning, China

Online published: 2010-01-25

摘要

应用分形理论中的幂指函数关系法,分别选取粒径r区间和质量累计百分含量5%~95%的范围为无标度区,对辽东半岛黄土的粒度分维特征进行分析。结果显示:以粒径r区间为无标度区(0.76~263.75 μm),七顶山马兰黄土的粒度分维值介于2.2085~2.3184之间,平均值为2.2744,相关系数为0.8835;离石黄土粒度分维值介于2.2748~2.4237之间,平均值为2.3467,相关系数为0.8920。全剖面粒度分维值在2.2085~2.4237之间,平均值为2.3187,相关系数达0.88以上,粒度分布具有分形特征。而以质量累计百分含量5%~95%的范围为无标度区,马兰黄土分维值介于2.4220~2.5042之间,平均值为2.4761,相关系数为0.9889,分选系数为2.4067;离石黄土分维值介于2.4268~2.545之间,平均值2.4993,相关系数为0.983,分选系数为2.5097。全剖面分维值介于2.422~2.545之间,相关系数达0.98以上。研究得出:分维值的大小对黄土的形成环境有良好的指示意义,对同一种成因以及不同种成因的沉积物分维特征研究应注意无标度区的选择。本区马兰黄土比离石黄土的分维值低,反映马兰黄土沉积时东亚冬季风强盛,气候寒冷干燥,分选系数偏小,自组织程度低;离石黄土沉积时夏季风较冬季风强盛,气候温暖湿润,分选较差,分选系数稍大,自组织程度高,与传统粒度分析所反映的环境演变一致。

本文引用格式

张威|郭善莉|李永化|李云艳 . 辽东半岛黄土粒度分维特征及其环境意义[J]. 地理科学进展, 2010 , 29(1) : 79 -86 . DOI: 10.11820/dlkxjz.2010.01.011

Abstract

On the basis of the fractal theory and the selection of different methods of non-criterion degree, this paper analyzes the fractal characters of the loess deposits in the Peninsula of East Liaoning. Used the scale of particle size as the non-criterion degree, the fractal dimension value of Malan Loess is between 2.2085 and 2.3184, with an average of 2.2744, and the correlation coefficient of 0.8835. The value of Lishi Loess is between 2.2748 and 2.4237, with an average of 2.3467, and the correlation coefficient of 0.8920. The whole profile fractal dimension value is between 2.2085 and 2.4237, an average of 2.3187, and the correlation coefficient of more than 0.88. However, taking the scale of percentage of cumulating weight as the non-criterion degree, the fractal dimension value of Malan Loess is between 2.422-2.5042, with an average of 2.4761, and the correlation coefficient of 0.9889. The value of Lishi Loess is between 2.4268-2.545, with an average of 2.4993, and the correlation coefficient of 0.983. The whole profile fractal dimension value is between 2.422-2.545, with the correlation coefficient of more than 0.98. Compared with other regions, the grain-size distribution has good fractal characteristics. Fractal dimension of size in the environment for the formation of the Loess can be used as a good index. Selection of non-criterion degree should be taken into account during the research of the deposits with the same/different origins. The fractal dimension of Malan Loess is lower than Lishi Loess, which indicates that Malan Loess deposited at the stage of strengthening of the East Asian winter monsoon with a cold and dry climate, and also with a small sorting coefficient. The sorting of the Malan Loess is slightly better than that of the Lishi Loess, suggesting that there are the low level of self-organization and the low-dimensional value. The Lishi Loess was deposited when the summer monsoon became stronger with a warm and humid climate. Poor separation and slightly larger sorting coefficient show that there is the higher degree of self-organization and fractal dimension.

参考文献


[1]   孙有斌, 高抒, 李军. 边缘海陆缘物质中环境敏感粒度组分的初步分析. 科学通报, 2003, 48(1): 83-86.

[2]   鹿化煜, 安芷生. 黄土高原黄土粒度组成的古气候意义. 中国科学(D辑), 1998, 28(3): 278-283.

[3]   吕连清, 方小敏,  鹿化, 等. 青藏高原东北缘黄土粒度记录的末次冰期千年尺度气候变化, 科学通报, 2004, 49(11): 1091-1098.

[4]  徐建树, 潘宝田, 高红山, 等. 末次间冰期-冰期旋回黄土环境敏感粒度组分的提取及意义. 土壤学报, 2006, 43(2): 183-186.

[5]   汪海斌, 陈发虎, 张家武. 黄土高原西部地区黄土粒度的环境指示意义. 中国沙漠, 2001, 21(1): 21-26.

[6]   Markovi?觬 S B, Bokhorst M P, Vandenberghe J, et al. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science, 2008, 23(1): 73-84.

[7]   Frechen M. Upper Pleistocene loess stratigraphy in Southern Germany. Quaternary Science Reviews, 1999, 18(2): 243-269.

[8]   Sun Y,  Lu H,  An Z. Grain size of loess, palaeosol and red clay deposits on the Chinese Loess Plateau: Significance for understanding pedogenic alteration and palaeomonsoon evolution. Palaeogeography,  Palaeoclimatology,  Palaeoecology, 2006, 241 (1): 129-138.

[9]   艾南山, 李后强. 第四纪研究的非线性科学方法. 第四纪研究, 1993, 2: 109-117.

[10] 汪品先. 气候与环境演变中的非线性关系: 以末次冰期为例. 第四纪研究, 1991, 2: 97-103.

[11] Rakhshandehroo G R, Shaghaghian M R, Keshavarzi A R, et al. Temporal variation of velocity components in a turbulent open channel flow: Identification of fractal dimensions. Applied Mathematical Modelling, 2009, 33 (10): 3815-3824.

[12] Rehman S, Siddiqi A H. Wavelet based hurst exponent and fractal dimensional analysis of Saudi climatic dynamics. Chaos, Solitons and Fractals, 2009, 40(3): 1081-1090.

[13] Pelletier J D. Fractal behavior in space and time in a simplified model of fluvial landform evolution. Geomorphology, 2007, 91 (3-4): 291-301.

[14]艾南山, 朱治军, 李后强. 外营力地貌作用随机特性和分行朗地貌的稳定性. 地理研究, 1998, 17(1): 23-30.

[15] 朱诚, 于世永, 刘晓宇. 分形方法在庐山第四纪沉积环境研究中的应用. 地理研究, 1996, 15(3): 64-69.

[16] 张捷, 包浩生. 分形理论及其在地貌学中的应用. 地理研究, 1994, 13(3): 104-112.

[17] 刘松玉, 方磊, 陈浩东. 论我国特殊土的粒度分布的分形结构. 岩土工程学报, 1993, 15 (1) : 23-30.

[18] 易顺民, 唐辉明. 冻土粒度成分的分形结构特征及其意义. 冰川冻土, 1994, 16 (4): 314-319.

[19] 柏春广, 王建. 一种新的粒度指标: 沉积物粒度分维值及其环境意义. 沉积学报, 2003, 21(2): 234-239.

[20] 毛龙江, 许晓燕, 许叶华. 南京江北地区下蜀黄土粒度分形与全新世环境演变. 中国沙漠, 2006, 26(2): 264-266.

[21] 侯春梅, 刘小伟, 李明, 等. 甘肃黄土的粒度分维特征及意义. 地质科学, 2005, 40(4): 539-546.

[22] Filgueira R R, Fournier L L. Cerisola C I. Particle-size distribution in soils: A critical study of the fractal model validation. Geoderma, 2006, 134: 327-334.

[23] Tasdemir A. Fractal evaluation of particle size distributions of chromites in different comminution environments. Minerals Engineering, 2009, 22: 156-167.

[24] 朱晓华, 王建, 陆娟. 关于地学中分形理论应用的思考. 南京师范大学学报(自然科学版), 2001, 24(3): 93-98.

[25] 陈冬梅, 穆桂金. 不同沉积环境下沉积物的粒度分形特征的对比研究. 干旱区地理, 2004, 27(1): 47-51.

[26] 秦耀辰, 刘凯. 分形理论在地理学中的应用研究进展. 地理科学进展, 2003, 22(4): 426-436.

[27] 商翎, 张志斌, 高飞, 等. 人类工程活动的生态环境效应: 以大连市金州区七顶山乡一带生态环境演变为例. 地质灾害与环境保护, 2006, (1): 21-25.

[28] 辽宁省地质矿产局, 辽宁省区域地质志. 北京: 地质出版社, 1982.

[29] B B Mandelbrot. The fractal geometry of nature. Freemen, San Francisco, USA, 1982, 95-190.

[30] 徐建华. 现代地理学中的数学方法. 北京: 高等教育出版社, 2002, 392-401.

[31] 李雪铭. 辽南滨海黄土粒度环境信息高分辨率研究. 地理研究, 2002, 21(2): 201-208.

[32] 吕金福, 李志民. 辽东半岛的黄土及其沉积环境. 地理科学, 1990, 10(2): 97-104.

[33] 曹家欣, 李培英, 石宁. 山东庙岛群岛的黄土. 中国科学(B辑), 1987, 17(10): 1116-1123.

[34] 李培英, 成振波,  吕厚远, 等. 辽东海岸带黄土. 地质学报, 1992, 66(1): 82-94.

[35] 田堪良, 张会礼. 论天然沉积砂卵石粒度分布的分形结构. 西北水资源与水工程, 1996, 7(4): 26-31.

[36] 章伟艳, 殷汝广, 张富元, 等. 深海柱样粒度分维特征及其古海洋学意义. 海洋通报, 2005, 24(1): 41-46.

[37] 易顺民, 孙云志. 泥石流的分形特征及其意义. 地理科学, 1997, 17(1): 24-31.

[38] 易惟熙, 沈承德, 刘东生. 洛川黄土微米级至纳米级物质颗粒度分布规律. 地球化学, 1995, 24(4): 327-333.

[39] 刘东生. 黄土与环境. 北京: 科学出版社, 1985.

[40] 张威, 李云艳, 李丽. 大连市七顶山黄土粒度特征及其沉积环境. 资源与产业, 2008, 10(3): 75-80.

[41] 焦亚宁, 魏成凯. 辽东半岛黄土的初步研究. 地理科学, 1987, 7(3): 231-236.

[42] 于洪军. 中国东部陆架黄土成因的新探索. 第四纪研究, 1999, 4: 368-372.

[43 ] 李培英. 庙岛群岛的晚新生界与环境变迁. 海洋地质与第四纪地质, 1987, 7(4): 111-121.

[44] 鲁瑞洁, 哈斯, 岳兴玲, 等. 第四纪风沙环境证据的研究进展. 地理科学进展, 2004, 23 (3): 82-90.

[45] 延昊, 王长耀, 牛铮, 等. 东亚沙尘源地、沙尘输送路径的遥感研究. 地理科学进展, 2002, 22(1): 90-94.

[46] 董光荣, 王贵勇, 李孝泽, 等. 末次间冰期以来我国东部沙区的古季风变迁. 中国科学(D辑), 1996, 26 (5): 437-444.

[47] 赵松龄, 于洪军, 刘敬圃. 晚更新世末期陆架沙漠化环境演化模式的探讨. 中国科学(D辑), 1996, 26 (2): 142-146.

[48] Zhao Songling, Yu Hongjun, Liu Jingpu. Origin, development and evolutionary model of shelf desertization environment in late stage of Upper Pleistocene. Science in China (Series D), 1997, 40 (2): 207-214.

文章导航

/