地下水监测网优化的总体目标是用最少的投入最大化地获得满足一定精度要求的地下水动态信息。一个高效的监测网,不仅能够提供动态实时的地下水信息,而且可以为地下水环境的科学研究提供可靠来源,同时也是决策者有效管理的辅助工具,故地下水监测网布局的合理与否意义重大。关于地下水监测网的优化问题,主要包括监测密度、监测位置、监测指标以及监测频率的优化,现国内外众多专家学者已提出并尝试了一些定性(如水文地质分析法)和定量(如克里格插值法和信息熵等)的优化方法,取得了诸多成效,但基本上都是针对单一目标的优化,多目标的综合时空分析较少,且各种方法的组合优化不多,使得方法间的优势未充分发挥出来,这些都有待进一步的探索研究。本文目的旨在综合分析比较地下水监测网各种优化方法,且在此基础上,提出了一种多方法融合的多目标优化体系。
[1] Ward R C, Loftis J C, Mcbride G B. The data-rich but informationpoor syndrome in water quality monitoring.Environmental Management, 1986, 10(3): 291-297.
[2] 陈植华. 地下水观测网的若干问题与基于信息熵的研究方法. 地学前缘, 2001, 8(1): 135-142.
[3] 董殿伟, 林沛, 晏婴, 等. 北京平原地下水水位监测网优化. 水文地质工程地质, 2007(1): 10-19.
[4] 高赞东, 段秀铭, 王庆兵, 等. 济南岩溶泉域地下水水质监测. 水文地质工程地质, 2008(2): 10-17.
[5] Hughes J P, Lettenmaier D P. Date requirements for kriging:estimation and network design. Water Resources Research,1981, 17(6): 1641-1650.
[6] 忤彦卿, 边农方. 岩溶地下水监测网优化设计. 地学前缘, 2003, 10(4): 637-643.
[7] 周仰效, 李文鹏. 区域地下水位监测网优化设计方法.水文地质工程地质, 2007(1): 1-9.
[8] 周仰效, 李文鹏. 地下水水质监测与评价. 水文地质工程地质, 2008(1): 1-11.
[9] 郭占荣, 刘志明, 朱延华. 克里格法在地下水观测网优化设计中的应用. 地球学报, 1998, 19(4): 429-433.
[10] Yang F G, Cao S Y, Liu X N, et al. Design of groundwaterlevel monitoring network with ordinary Kriging. Journalof Hydrodynamics, 2008, 20(3): 339-346.
[11] Isaaks E H, Mohan Srivastava R. Applied Geostatistics.New York: Oxford University Press, 1986: 1-561.
[12] Li L F, Wang J F, Hareton L. A knowledge-based similarityclassifier to stratify sample units to improve the estimationprecision. International Journal of Remote Sensing,2009, 30(5): 1207-1234.
[13] Li L F, Wang J F, Cao Z D, et al. An information-fusionmethod to identify pattern of spatial heterogeneity for improvingthe accuracy of estimation. Stochastic EnvironmentalResearch and Risk Assessment, 2008, 22(6):689-704.
[14] Wang J F, Christakos G, Hu M G. Modeling spatialmeans of surfaces with stratified non-homogeneity. IEEETransactions on Geoscience and Remote Sensing, 2009,47(12): 4167-4174
[15] Wang J F, Rober H, Cao Z D. Sample surveying to estimatethe mean of a heterogeneous surface: reducing theerror variance through zoning. International Journal ofGeographical Information Science, 2010, 24(4): 523-543
[16] 张立杰, 刘琦, 张焕智. 聚类分析方法及其在水文地质分析中的应用. 长春科技大学学报, 1999, 29(4):349-354.
[17] 李劲, 闫波, 丁志安, 等. 聚类分析在优化地下水监测点位中的应用. 中国环境监测, 1997, 13(4): 15-18.
[18] 梁康, 杜利生. 基于主成分分析法的吉林省西部潜水水质分析. 东北水利水电, 2007, 25(10): 55-57.
[19] 鲁斐, 李磊. 主成分分析法在辽河水质评价中的应用.水利科技与经济, 2006, 12(10): 660-662.
[20] 钟爽, 刘志斌. 露天煤矿排土场淋溶水污染区的地下水质监测点优化. 露天采矿技术, 2005(4): 23-25.
[21] 张瑞钢, 钱家忠, 赵卫东, 等. 对应分析法在地下水化学特征分析中的应用. 合肥工业大学学报: 自然科学版,2008, 31(10): 1552-1555.
[22] 郑连臣, 刘志斌, 周岩. 基于对应分析法的地下水水质监测点优化. 辽宁工程技术大学学报, 2007, 26(增刊):260-262.
[23] 倪福全, 宫辉力. 对应分析法在地下水水质评价中的应用. 地下水, 1993, 15(3): 97-100.
[24] 仵彦卿. 估计地下水流系统分布型确定性: 随机性参数的耦合算法. 西安理工大学学报, 2000, 16(2): 113-121.
[25] 焦华. 国外地下水监测系统. 工程勘察, 1990(6): 35-39.
[26] Van Geer F C, Te Stroet C B M, Zhou Y X. Using Kalmanfiltering to improve and quantify the uncertainty ofnumerical groundwater simulations, the role of systemnoise and its calibration. Water Resources Research,1991, 27(8): 1987-1994.
[27] Van Geer F C, Zhou Y X. Using Kalman filtering to improveand quantify the uncertainty of numerical grounderwatersimulations. Water Recourse Research, 1991, 27(8): 1987-1994.
[28] 仵彦卿. 地下水动态监测网优化设计的有限元与卡尔曼滤波耦合算法. 西安理工大学学报, 2000, 16(2):122-128.
[29] 陈植华, 丁国平. 应用信息熵方法对区域地下水观测网的优化研究. 地球科学: 中国地质大学学报, 2001, 26(5): 517-523.
[30] 陈植华. 应用信息熵方法对地下水观测网的层次分类:以河北平原地下水观测网为例. 水文地质工程地质,2003, 29(3): 24-28.
[31] 陈植华, 丁国平, 胡成. 用于水资源系统观测网空间布局优化设计的技术方法. 地质科技情报, 2000, 19(4):83-88.
[32] Mogheir Y, Singh V P. Application of Information Theoryto Groundwater Quality Monitoring Networks. Water ResourcesManagement, 2002, 16(1): 37-49.
[33] Mogheir Y, de Lima J L M P, Singh V P. Characterizingthe spatial variability of groundwater quality using the entropytheory: I. Synthetic data. Hydrological Process,2004, 18(13): 2165-217.
[34] Karamouz M, Nokhandan A K. Design of on-line riverwater quality monitoring systems using the entropy theory:A case study. Environmental Monitoring and Assessment,2009, 155(1): 63-81.
[35] Mogheir Y, Singh V P. Spatial assessment and redesign of a groundwater quality monitoring network using entropytheory, Gaza Strip, Palestine. Hydrogeology Journal,2006, 14(5): 700-712.
[36] Masoumi F, Kerachian R. Optimal redesign of groundwaterquality monitoring networks: A case study. EnvironmentalMonitoring and Assessments, 2001, 161(1):247-257.
[37] Guo Y S, Wang J F. Spatial analysis on the layout ofgroundwater quality monitoring network. 2010 18th InternationalConference on Geoinformatics, Geoinformatics2010.
[38] Mogheir Y, de Lima J L M P. Entropy and multi-objectivebased approach for groundwater quality monitoring network,assessment and redesign. Water Resource Management,2009, 23(8): 1603-1620.
[39] Mogheir Y, de Lima J L M P, Singh V P. Assessment ofinformativeness of groundwater monitoring in developingregions (Gaza Strip Case Study). Journal of Water ResourcesManagement, 2005, 19(6): 737-757.
[40] 王戈, 徐俊刚. 多层区域划分下蚁群算法研究. 电子技术, 2009(10): 78-79.
[41] Gutjahr W J. A graph-based ant system and its convergence.Future Generation Computer Systems, 2000, 16(8): 873-888.
[42] Li Y H, Chan Hilton A B. Optimal groundwater monitoringdesign using an ant colony optimization paradigm.Environmental Modeling & Software, 2007, 22(1):110-116.
[43] Li Y H, Chan Hilton A B. Reducing Spatial sampling inLong-Term Groundwater Monitoring Networks UsingAnt Colony Optimization. International Journal of ComputationalIntelligence Research, 2005, 1(1): 19-28.
[44] 王劲峰, 姜成晟, 李连发, 等. 空间抽样与统计推断. 北京: 科学出版社, 2009: 1-182.