水文过程

基于MoDls遥感数据地表水汽压估算

展开
  • 中国科学院地理科学与资源研究所资源环境科学数据中心|北京100101
黄耀欢|博士生|主要从事GIS|遥感在水文水资源方面应用研究.E-mail: huangyh@lreis.ac.cn.

收稿日期: 2010-01-01

  修回日期: 2010-05-01

  网络出版日期: 2010-09-25

基金资助

国家科技支撑计划课题(2008BAC34B06, 2006BAB04A16)

Estimation of the Surface Vapor Pressure Based on the MODIS Images

Expand
  • Data Center for Resources and Environmental Sciences, Institute Of Ceographleal Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101

Received date: 2010-01-01

  Revised date: 2010-05-01

  Online published: 2010-09-25

摘要

地表水汽压是大气科学、水文学等多项研究中的一个重要输入参数。鉴于常规观测方法对于地面气象站点依赖性强且空间不连续的缺点,采用MODIS遥感数据对海河流域的日平均地表水汽压进行估算。通过相关分析得出日平均地表水汽压与MOD07低空可降雨量数据具有很强的相关性,并通过对比采用二次曲线进行建模。选取2009年1-4月数据对二次曲线模型的验证结果表明,估算结果与实测日平均地表水汽压1:1曲线的相关系数 R2为0.83。本文的研究结果提供了一种实用的基于遥感数据估算日平均地表水汽压的方法。

本文引用格式

黄耀欢, 江东, 庄大方, 付晶莹 . 基于MoDls遥感数据地表水汽压估算[J]. 地理科学进展, 2010 , 29(9) : 1137 -1142 . DOI: 10.11820/dlkxjz.2010.09.017

Abstract

Surface vapor pressure (SVP) is a highly significant variable for physically based ecosystem, hydrology and climate modeling without available regional spatially representative data currently. Conventional field observation SVP data is spatial discontinuous and time-consuming, so MODIS images are used to estimate the mean daily SVPin the Haihe River basin. Firstly, correlation analysis is taken and it is found that there are significant correlations between the dataset of precipitable water vapor low in MOD07 images and field observed SVP. Secondly, comparison of the models based on correlation analysis shows that second-order polynomial regression is the most suitable one for evaluating SVP in the Haihe river area. Finally, a series of MOD07 images from January to April of 2009 are used to validate the proposed second-order polynomial model. The result shows that the estimated value is close to the observed value, and their slope and R2 of 1:1 line analysis are 0.918 and 0.83, respectively. The results indicated that the proposed PWV-SVP model is effective for obtaining SVP data at a regional scale.

参考文献


[1] Nishida K, Nemani R R, Glassy J M, et al. Development of an evapotranspiration index fiom Aqua/MODIS for monitoring surface moisture status. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 1-9.

[2] 贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践.北京:中国水利水电出版社,2005: 61-63.

[3] Iziomona MG,Mayer H, Matzarakis A. Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization. Journal of Atmospher is and Solar-Terrestrial Physics, 2003,65(10): 1107-1116.

[4] 杨景梅,邱金桓.我国可降水量同地面水汽压关系的经验表达式.大气科学,1996, 20(5): 620-626.

[5] 张学文.可降水量与地面水汽压的关系.气象,2004, 30(2): 9-11.

[6] Reber E E, Swope J R. On the correlation of the total precipitable water in a vertical column and absolute humidity at the surface. Journal of Applied Meteorology, 1972, 11(2): 1322-1325.

[7] 李超,魏合理,刘厚通,等.整层大气水汽含量与地面水汽压相关性的统计研究.武汉大学学报信息科学版,2008, 33(11): 1170-1173.

[8] Karalis J D. Precipitable water and its relationship to surface dew point and vapor pressure in Athens. Journal of Applied Meteorology, 1974, 13(1): 760-766.

[9] Monteith J L. An empirical method for estimating longwave radiation exchanges in the British Isles. Quarterly Journal of the Royal Meteorological Society, 1961, 87(372):179-191.

[10] Idso S B. Atmospheric attenuation of solar radiation. Jour-nal of the Atmospheric Sciences, 1969, 26 (12): 1088- 1095.

[11] Gan B C, Kauhnan Y J. Water vapor retrievals using Moderate Resolution Imaging Specttoradiometer (MODIS) near-infiared channels. Journal of Geophysical Research, 2003, 108(D13): 4389.

[12] Seemann SW,Li J, Menzel W P. Operational retrieval of atmospheric temperature, moisture and ozone fiom MODIS infiared radiances. Journal of Applied Meteorology, 2003, 42(8): 1072-1091.

文章导航

/