资源与生态环境

干旱对陆地生态系统水碳过程的影响研究进展

展开
  • 1. 生态系统网络观测与模拟重点实验室, 中国生态系统研究网络综合研究中心, 中国科学院地理科学与资源研究所, 北京100101|
    2. 中国科学院研究生院, 北京100039
胡中民( 1981- )| 男, 博士生, 主要从事气候变化对草地生态系统水碳循环影响研究. Email: huzm.03s@igsnrr.ac.cn

收稿日期: 2006-08-01

  修回日期: 2006-11-01

  网络出版日期: 2006-11-25

基金资助

国家自然基金重大项目(30590381), 国家重点基础研究发展规划项目(G2002CB412501) 和中国科 学院知识创新工程重大项目(KZCX1- SW- 01- 01A) 共同资助.

Effects of Drought on Ecosystem Carbon and Water Processes: a Review at Differ ent Scales

Expand
  • 1. Key Laboratory of Ecosystem Network Observation and Modeling, the Center for Synthesis Research, Chinese Ecosystem Research Network Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China|
    2. Graduate University of Chinese Academy of Sciences, Beijing 100039, China

Received date: 2006-08-01

  Revised date: 2006-11-01

  Online published: 2006-11-25

摘要

在全球气候变化与生态系统研究领域中, 干旱对生态系统水碳过程的影响越来越受到重 视。在植物个体水平上, 干旱会引起植物叶片气孔导度降低, 溶质含量增加, 叶片变厚、地下生物 量比例增加等以减少水分损失。与此同时, 植物叶片的光合速率也因气孔导度的降低而下降。适 度的干旱通常会使植物利用效率得到提高。不同植物具有不同的水分利用策略, 它们的生理和形 态特征对干旱的响应表现出显著的差异性; 在群落或生态系统水平上, 干旱会影响群落冠层的生 理特性以及群落的结构组成, 从而引起生态系统的水碳循环过程的改变。主要体现为植被的光合 速率、呼吸速率、蒸腾速率降低, 而生态系统的水分利用效率在极端干旱条件下也可能降低。受干 旱影响, 植物群落耐旱植物所占比例增加, 群落的物种多样性和生产力也会降低。尽管目前有关 干旱对生态系统水碳过程影响在各个层面都已涉及, 但这些研究内容多是彼此孤立的, 为了深入 认识生态系统对干旱的响应机理, 还需要结合多种技术手段, 综合考虑生态系统水循环、碳循环、 氮循环等多过程间的耦合关系, 并建立生态系统不同层次间和时间尺度间机理联系的理论体系。

本文引用格式

胡中民,于贵瑞,樊江文,温学发 . 干旱对陆地生态系统水碳过程的影响研究进展[J]. 地理科学进展, 2006 , 25(6) : 12 -20 . DOI: 10.11820/dlkxjz.2006.06.002

Abstract

In the background of global climate change, the effect of drought on ecosystem structure and function has been paid more and more attention to. In this paper, for the purpose of presenting approaches to elucidate the mechanism of drought effects on ecosystem processes, we reviewed the effects of drought on carbon/water processes at individual level and community level. At the individual level, drought can make plant change its physiological and morphological traits to conserve water, such as decreasing stomata conductance, increasing solute content, changing stomata density and size, increasing specific leaf area and belowground biomass allocation, etc. In addition, different plants have different water - use strategies. Their physiological and morphological traits responding to drought are apparently distinct. At the community level, similarly, drought can change vegetations physiology and structure, such as photosynthesis, respiration, transpiration, water use efficiency, biodiversity, productivity et al. Despite that most aspects of drought effects on ecosystem are included in current studies, they are isolated from each other. To fully understand how ecosystem responds to drought, it is essential to combine all methods available, to synthetically study the processes coupling with each other (e.g. carbon cycle, water cycle and nitrogen cycle), and to construct a theoretical system to connect different time scales ( from minute to decade) and levels (from leaf to ecosystem).

参考文献


[1] Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell K, Johnson C A. “Climate Change 2001: The Scientific Basis”. Cambridge University Press, 2001.

[2] Weltzin J F, Loik M E, Schwinning S, Williams D G, Fay P, Hadda B, Harte J, Huxman T E, Knapp A K, Lin G, Pockman W T, Shaw M R, Small E E, Smith M D, Smith S D, Tissue D T, Zak J C. Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 2003, 53: 941~952.

[3] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis. New York: Cambridge University Press, 2001.

[4] Knapp A K, Fay P A, Blair J M, et al. Rainfall variability, carbon cycling and plant species diversity in a mesic grassland. Science, 2002, 298: 2202~2205.

[5] Baldocchi, D. The carbon cycle under stress. Nature, 2005, 437: 483~484.

[6] Ciais Ph, Reichstein M, Viovy N et al. Europe- wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437: 529~533.

[7] Law B E, Williams M M, Anthoni P M et al. Measuring and modelling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit. Global Change Biology, 2000, 6, 613~630.

[8] 于贵瑞, 王秋凤, 于振良. 陆地生态系统水- 碳耦合循环与过程管理研究. 地球科学进展, 2004, 19(5): 831~839.

[9] 接玉玲, 杨洪强, 崔明刚, 罗新书. 土壤含水量与苹果叶片水分利用效率的关系. 应用生态学报, 2001, 12(3):387~390.

[10] He W M, Zhang X S. Responses of an evergreen shrub Sabina vulgaris to soil water and nutrient shortages in the semiarid Mu Us Sandland in China. Journal of Arid Environments, 2003, 53: 307~316.

[11] Lefi E, Medrano H, Cifre J. Water uptake dynamics, photosynthesis and water use efficiency in field grown Medicago arborea and Medicago citrina under prolonged Mediterranean drought conditions. Annual applied Biology, 2004, 144: 299~307.

[12] Yin C, Peng Y, Zang R, Zhua Y, Li C. Adaptive responses of Populus kangdingensis to drought stress. Physiolgia Plantarum, 2005a, 123: 445~451.

[13] Yin C, Wang X, Duan B, Luo J, Li C. Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress. Environmental and Experimental Botany, 2005b, 53: 315~322.

[14] 周瑞莲,孙国钧,王海鸥. 沙生植物渗透调节物对干旱、高温的响应及其在逆境中的作用. 中国沙漠, 1999, 19:18~22.

[15] Xu S, An L, Feng H, Wang X, Li X. The seasonal effects of water stress on Ammopiptanthus mongolicus in a desert environment. Journal of Arid Environments, 2002, 51:437~447.

[16] Wang S M, Wan C G, Wang Y R. The characteristics of Na, K and free praline distribution in several drought- resistant plants of the Alxa Desert, China. Journal of Arid Environments, 2004, 56:525~539.

[17] 胡小文, 王彦荣, 武艳培. 荒漠草原植物抗旱生理生态学研究进展. 草业学报, 2004, 13( 3) : 9~15.

[18] 陈世苹, 白永飞, 韩兴国, 安吉林, 郭富存. 沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化. 植物生态学 报, 1004, 28(4): 515~522.

[19] 陈世苹, 白永飞, 韩兴国. 内蒙古锡林河流域不同植物群落中羊草和糙隐子草水分利用效率的变异. 植物学报,2002a, 44(12): 1484~1490.

[20] Moore D J, Nowak R S, Tausch R J. Gas exchange and carbon isotope discrimination of Juniperus osteosperma and Juniperus occidentalis across environmental gradients in the Great Basin of western North America. Tree Physiology, 1999, 19: 421~433.

[21] Miller J M, Williams R J, Farquhar G D. Carbon isotope discrimination by a sequence of Eucalyptus species along a subcontinental rainfall gradient in Australia. Functional Ecology, 2001, 15:222~232.

[22] 严昌荣, 韩兴国,陈灵芝. 六种木本植物水分利用效率和其小生境关系研究. 生态学报, 2001, 21(11): 1952~1956.

[23] 陈世苹, 白永飞, 韩兴国, 安吉林, 郭富存. 沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化. 植物生态学 报, 2004, 28(4): 515~522.

[24] 蒋高明, 何维明. 毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异. 植物学报, 1999, 41 (10):1114~1124.

[25] 苏波, 韩兴国, 李凌浩等. 中国东北样带草原区植物δ13C 值及水分利用效率对环境梯度的响应. 植物生态学报, 2002, 24(6):648~655.

[26] Jiang G, Tang H, Yu M, Dong M, Zhang X. Response of photosynthesis of different plant functional types to environmental changes along Northeast China Transect. Trees, 1999, 14: 72~82.

[27] 蒋高明, 董鸣. 沿中国东北样带(NECT)分布的若干克隆植物与非克隆植物光合速率与水分利用效率的比较. 植物学 报, 2000, 42(8):855~863.

[28] 杨建昌, 乔纳圣, 威尔斯, 朱庆森, 彭智勇. 水分胁迫对水稻叶片气孔频率、气孔导度及脱落酸含量的影响. 作物学报, 1995, 21(5): 533~539.

[29] 孟雷, 李磊鑫, 陈温福, 徐正进, 刘丽成. 水分胁迫对水稻叶片气孔密度、大小及净光合速率的影响. 沈阳农业大学 学报, 1999, 30(5): 477~480.

[30] 王静, 续惠云. 水分胁迫对春小麦苗期叶肉细胞和气孔数的影响. 西北植物学报, 2000, 20(5): 842~846.

[31] 于海秋, 武志海, 沈秀瑛, 徐克章. 水分胁迫下玉米叶片气孔密度、大小及显微结构的变化. 吉林农业大学学报, 2003, 5(3): 239~242.

[32] Zhang J W, Marshall J D, Jaquish B C. Genetic differentiation in carbon isotope discrimination and gas exchange in Pseudotsuga menziesii. Oecologia, 1993, 93: 80~87.

[33] Zhang J W, Marshall J D, Fins L. Correlated population differences in dry matter accumulation, allocation, and wateruse efficiency in three sympatric conifer species. Forestry Science, 1996, 42: 242~249.

[34] Anderson J E, Williams J, Kriedemann P E et al. Correlations between carbon isotope discrimination and climate of native habitats for diverse eucalypt taxa growing in a common garden. Australian Journal of Plant Physiology, 1996, 23:311~320.

[35] Li C. Carbon isotope composition, water - use efficiency and biomass productivity of Eucalyptus microtheca populations under different water supplies. Plant and Soil, 1999, 214: 165~171.

[36] Liu F, Stützel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 2004, 102: 15~27.

[37] Van Den Boogaard R, Veneklaas E J, Lambers H. The association of biomass allocation with growth and water use efficiency of two Triticum aestivum cultivars. Australian Journal of Plant Physiology, 1996, 23: 751~761.

[38] Martin B, Thorstenson Y R. Stable carbon isotope composition (δ13C), water use efficiency and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 hybrid. Plant Physiology, 1988, 88: 213~217.

[39] Wright G C, Hubick K T, Farquhar G D. Discrimination in carbon isotope of leaves correlates with water- use efficiency of field- grown peanut cultivars. Australian Journal of Plant Physiology, 1988, 15: 815~825.

[40] Wright G C, Rao R C N, Farquhar G D. Water- use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Science, 1994, 34: 92~97.

[41] Wang R Z, Ripley E A, Zu Y G, et al. Demography of reproductive and biomass allocation of grassland and dune Leymus chinensis on the Songnen Plain, north- eastern China. Journal of Arid Environments, 2001, 49: 289~299.

[42] Wang R Z, Gao Q, Chen Q S. Effects of climatic change on biomass and biomass allocation in Leymus chinensis (Poaceae) along the North- east China Transect (NECT). Journal of Arid Environments, 2003, 54: 653~665.

[43] Wang R Z. Demographic variation and biomass allocation of Agropyron cristatum grown on steppe and dune sites in the Hunshandake Desert, North China. Grass and Forage Science, 2005, 60: 99~102.

[44] Craufurd P Q, Wheeler T R, Ellis R H, Summerfield R J, Williams J H. Effect of temperature and water deficit on wateruse efficiency, carbon isotope discrimination, and specific leaf area in peanut. Crop Science, 1999, 39: 136~142.

[45] Maroco J P, Pereira J S, Chaves M M. Growth, photosynthesis and water - use efficiency of two C4 Sahelian grasses subjected to water deficits. Journal of Arid Environments, 2000, 45: 119~137.

[46] Ngugi M R, Hunt A, Doley D, Ryan P, Dart P J. Effects of soil water availability on water use efficiency of Eucalyptus cloeziana and Eucalyptus argophloia plants. Australian Journal of Botany, 2003, 51: 159~166.

[47] RomàO, Josep P. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany, 2003, 50: 137~148.

[48] Niu S L, Peng Y, Jiang G M, Li Y G, Gao L M, Liu M Z, Cui H X, Ding L. Differential Responses to Simulated Precipitation Exhibited by a Typical Shrub and a Herb Coexisted in Hunshandak Sandy Land. Acta Botanica Sinica, 2004, 46 (10): 1170~1177.

[49] Otienoa D O, Schmidta M W T, Kinyamariob J I, Tenhunena J. Responses of Acacia tortilis and Acacia xanthophloea to seasonal changes in soil water availability in the savanna region of Kenya. Journal of Arid Environments, 2005, 62(3): 377~400.

[50] Zhang X, Wu N, Li C. Physiological and growth responses of Populus davidiana ecotypes to different soil water contents. Journal of Arid Environments, 2005, 60(4): 567~579.

[51] Gebre G M, Tschaplinski T J, Shirshac T L. Water relations of several hardwood species in response to throughfall manipulation in an upland oak forest during a wet year. Tree Physiology 18, 1998, 299~305.

[52] Li C, Wang K. Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. Populations. Forest Ecology and Management, 2003, 179: 377~385.

[53] Passioura J B. Water in the soil- plant- atmosphere continuum. In: (eds) Lange O L, Nobel P S, Osmond C B and Ziegler H, Physiological Plant Ecology 2. Water Relations and Carbon Assimilation, 5~33. Encyclopedia of Plant Physiology, New Series, Volume 12B. Springer Verlag, Berlin, 1982.

[54] Tsialtas J T, Handley L L, Kassioumi M T, Veresoglou D S, Gagianas A A. Interspecific variation in potential water- use efficiency and its relation to plant species abundance in a water - limited grassland. Functional Ecology, 2001, 15: 605~ 614.

[55] Patterson T B, Guy R D, Dang Q L. Whole- plant nitrogen- and water- relations traits, and their associated trade- offs, in adjacent muskeg and upland boreal spruce species. Oecologia, 1997, 110:160~168.

[56] Chen S, Bai Y, Zhang L, Han X. Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 2005, 53: 65~75.

[57] Valentini R, Scarascia M G, de Angelis P et al. An experimental test of the eddy correlation technique over a Mediterranean macchia canopy. Plant, Cell and Environment, 1991, 14, 987~994.

[58] Valentini R, Gamon J A, Field C B. Ecosystem gas exchange in a California grassland: seasonal patterns and implications for scaling. Ecology, 1995, 76, 1940~1952.

[59] Buchmann N, Schulze E- D. Net CO2 and H2O fluxes of terrestrial ecosystems. Global Biogeochemical Cycles, 1999, 13: 751~760.

[60] Reichstein M, Tenhunen J D, Roupsard O et al. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Global Change Biology, 2002, 8(10): 999~1017.

[61] Rambal S, Ourcival J-M, Joffre R et al. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Global Change Biology, 2003, 9(12): 1813~1824.

[62] Cox P M, Huntingford C, Harding R J. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 1998, 212~213: 79~94.

[63] Richard D B, Newkirk K M, Rullo G M. Carbon dioxide and methane fluxes by a forest soil under laboratory- controlled moisture and temperature conditions. Soil Biol. Biochem, 1998, 30(12): 1591~1597.

[64] Ouyanga Y, Zheng C. Surficial processes and CO2 flux in soil ecosystem. Journal of Hydrology, 2000, 234: 54~70.

[65] Drewitt G B, Black T A, Nesic Z et al. Measuring forest floor CO2 fluxes in a Douglas- fir forest Agricultural and Forest Meteorology, 2002, 110: 299~317.

[66] Frank A B, Liebig M A, Hanson J D. Soil carbon dioxide fluxes in northern semiarid grasslands. Soil Biology & Biochemistry, 2002, 34: 1235~1241.

[67] 陈世苹, 白永飞, 韩兴国. 内蒙古锡林河流域植物功能群组成及其水分利用效率的变化———依水分生态类群划分. 植 物学报, 2003, 45(10): 1251~1260.

[68] Scanlon T M, Albertson J D. Canopy scale measurements of CO2 and water vapor exchange along a precipitation gradient in southern Africa. Global Change Biology, 2004, 10: 329~341.

[69] 唐海萍, 张新时. 中国东北样带的生态系统多样性梯度研究. 第四纪研究, 1999, 5:479.

[70] Wang R Z, Gao Q, Tang H P. Variations of plant life form diversity along the Northeast China Transect and its direct gradient analysis. Journal of Environmental Sciences- China, 2002, 14(4): 547~551.

[71] Ni J. Plant functional types and climate along a precipitation gradient in temperate grasslands, north - east China and south- east Mongolia. Journal of Arid Environments, 2003, 53: 501~516.

[72] 白永飞, 张丽霞, 张焱等. 内蒙古锡林河流域草原群落植物功能群组成沿水热梯度变化的样带研究.植物生态学报, 2002, 26(3):308~316.

[73] Dunne J A, Saleska S R, Fischer M L et al. Integrating experimental and gradient method in ecological climate change research. Ecology, 2004, 85(4): 904~916.

[74] Yu G R, Zhuang J, Yu Z L. An Attempt to Establish a Synthetic Model of Photosynthesis- Transpiration Based on Stomatal Behavior for Maize and Soybean Plants Grown in Field. Journal of Plant Physiology, 2001, 158: 861~874.

[75] Yu G R, Wang Q F, Zhuang J. Modeling the water use efficiency of soybean and maize plants under environmental stresses: application of a synthetic model of photosynthesis - transpiration based on stomatal behavior. Journal of Plant Physiology, 2004, 161: 303~318.

[76] 曹明奎, 于贵瑞, 刘纪远, 李克让. 陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟. 中国科学D 辑, 2004, 34( 增刊II) : 1~14.

文章导航

/