气候变化

地形湿度指数算法误差的定量评价

展开
  • 1. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室, 北京100101;
    2. 中国科学院研究生院, 北京100049
包黎莉(1986-),女,硕士研究生,中国地理学会会员,主要研究方向为数字地形分析。E-mail: baoll@lreis.ac.cn

收稿日期: 2010-05-01

  修回日期: 2010-05-01

  网络出版日期: 2011-01-25

基金资助

国家自然科学基金项目(40971235,40501056);中国科学院知识创新项目(KZCX2-YW-Q10-1-5)。

Quantitative Error Assessment of Topographic Wetness Index Algorithms

Expand
  • 1. State Key Lab of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, CAS, Beijing 100049, China

Received date: 2010-05-01

  Revised date: 2010-05-01

  Online published: 2011-01-25

摘要

地形湿度指数(TWI)能够定量指示地形对土壤湿度空间分布的控制,是一种应用广泛的地形属性。目前基于栅格DEM的TWI 计算方法结果各异,因此有必要对TWI 算法进行定量评价。对TWI 算法通常是应用实际DEM数据进行评价,但实际DEM中存在的数据源误差会干扰对算法误差的评价。针对该问题,本文介绍了一种用不含数据源误差的人造DEM定量评价TWI算法误差的方法。本文选择4 种代表性TWI算法:基于经典单流向算法的TWI算法、基于经典多流向算法的TWI算法、基于局域地形自适应多流向算法的TWI算法,以及自适应多流向算法与最大下坡相结合的TWI算法,应用该评价方法构建了一组模拟4 种典型复合地形条件的人造表面,并分别离散成具有不同空间分辨率(1 m、10 m和30 m)的人造DEM数据,对TWI算法进行定量评价。评价结果显示:在中心凸、凹坡和马鞍面地形条件下,基于多流向算法计算的TWI优于基于单流向算法的TWI结果;在山脊地形条件下,基于单流向算法的结果仅次于MFD-md结合最大下坡度算法计算的结果。随着分辨率降低,基于多流向算法计算结果的误差逐渐增加,而基于D8 算法的计算结果随着地形条件的不同而呈现出不同的变化趋势。本文所推荐的TWI算法定量评价方法通过简单扩展也同样适用于其他复合地形属性算法误差定量评价。

本文引用格式

包黎莉, 秦承志, 朱阿兴 . 地形湿度指数算法误差的定量评价[J]. 地理科学进展, 2011 , 30(1) : 57 -64 . DOI: 10.11820/dlkxjz.2011.01.007

Abstract

Topographic Wetness Index (TWI) is a widely-used topographic attribute which can predict the control of terrain on spatial distribution of soil moisture. Diverse TWI algorithms might get very different results; therefore, it is necessary to assess the algorithms. Traditional error assessment method applies TWI algorithms to 'real-world' DEM, but the error from DEM quality might interfuse the error from algorithms and thus influence the accuracy of evaluation. To solve the problem, this paper proposes an assessment method of error from TWI algorithm with artificial DEMs which can avoid data source error. Four typical TWI algorithms, i.e. TWI algorithm based on a typical single flow direction algorithm (D8), TWI algorithm based on a typical multiple flow direction algorithm (FD8), TWI algorithm based on an adaptive multiple flow direction algorithm (MFD-md), and TWI algorithm using MFD-md in which the maximum downslope, instead of traditional slope gradient, is used to estimate the tanβ in equation of TWI, are evaluated by the proposed assessment method. First, four artificial surfaces are constructed to simulate typical compound terrain conditions, i.e. convex-centred slope, concave-centred slope, saddle-centred slope, and ridge-centred slope, respectively. Secondly, the artificial surfaces are converted to three sets of artificial DEM data with different cell size (1 m, 10 m, and 30 m) to apply TWI algorithms to compute TWI. Third, the theoretical TWIs for every artificial surface are calculated to quantitatively assess the error from TWI algorithms based on RMSE. Assessment result shows that TWI algorithms based on multiple flow direction algorithm (MFD) perform better than TWI algorithm based on single flow direction algorithm (SFD), i.e. D8, under terrain conditions of convex-centred slope, concave-centred slope and saddle-centred slope. Under ridge-centred slope terrain condition, the result of TWI algorithm based on SFD is just inferior to the result of TWI algorithm which combines MFD-md with maximum downslope algorithm. As the resolution becomes coarser, errors of TWI algorithms based on MFD become larger on the whole, while the trends of results of TWI algorithm based on SFD vary with different terrain conditions. The proposed quantitative assessment method for TWI algorithm can be similarly used to assess algorithms of other compound topographic attributes, such as specific catchment area, stream power index, and so on.

参考文献

[1] 张彩霞, 杨勤科, 李锐. 基于DEM的地形湿度指数及其应用研究进展. 地理科学进展, 2005, 24(6): 116-123.

[2] Pei T, Qin C Z, Zhu A X, et al. Mapping soil organic matterusing the topographic wetness index: A comparativestudy based on different flow-direction algorithms andkriging methods. Ecological Indicators, 2010, 10(3):610-619.

[3] 杨琳, 朱阿兴, 秦承志, 等. 基于典型点的目的性采样设计方法及其在土壤制图中的应用. 地理科学进展,2010, 29(3): 279-286.

[4] Quinn P, Beven K J, Lamb R. The Ln(α/tanβ) Index:How to calculate it and how to use it within the TOPMODEL framework. Hydrological Processes, 1995, 9(2):161-182.

[5] Wilson J P, Gallant J C. Terrain Analysis: Principles and Applications. New York: JohnWiley & Sons, 2000.

[6] Quinn P, Beven K, Chevalier P, et al. The prediction ofhillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes,1991, 5(1): 59-79.

[7] O'Callaghan J F, Mark D M. The extraction of drainage networks from digital elevation data. Computer Vision,Graphics, and Image Processing, 1984, 28(3): 323-344.

[8] Freeman T G. Calculating catchment area with divergent flow based on a regular grid. Computers & Geosciences,1991, 17(3): 413-422.

[9] 秦承志, 李宝林, 朱阿兴, 等. 水流分配策略随下坡坡度变化的多流向算法. 水科学进展, 2006, 17(4): 450-456.

[10] Qin C Z, Zhu A X, Pei T, et al. An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. International Journal of Geographical Information Science, 2007, 21(4): 443-458.

[11] 周启鸣, 刘学军. 数字地形分析. 北京: 科学出版社,2006.

[12] Wolock D M, McCabe G J. Comparison of single and multiple flow direction algorithms for computing topographic parameters. Water Resources Research, 1995, 31(5): 1315-1324.

[13] Pan F, Peters-Lidard C, Sale M, et al. A comparison of geographical information system-based algorithms for computing the TOPMODEL topographic index. Water Resources Research, 2004, 40: W06303, doi:10.1029/2004WR003069.

[14] Zhou Q M, Liu X J. Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science,2002, 16(8): 819-842.

[15] 刘学军, 龚健雅, 周启鸣, 等. 基于DEM坡度坡向算法精度的分析研究. 测绘学报, 2004, 33(3): 258-263.

[16] 秦承志, 朱阿兴, 李宝林, 等. 基于栅格DEM的多流向算法述评. 地学前缘, 2006, 13(3): 91-98.

[17] 秦承志, 杨琳, 朱阿兴, 等. 平缓地区地形湿度指数的计算方法. 地理科学进展, 2006, 25(6): 87-93.

[18] Qin C Z, Zhu A X, Pei T, et al. An approach to computing topographic wetness index based on maximum downslope gradient. Precision Agriculture, 2009, doi:10.1007/s11119-009-9152-y.

[19] 包黎莉, 秦承志, 覃彪, 等. 面向地形湿度指数算法误差评价的人造表面建模//中国地理学会百年庆典及2009年学术论文集, 2009.

[20] 秦承志, 卢岩君, 包黎莉, 等. 简化数字地行分析软件(SimDTA)及其应用: 以嫩江流域鹤山农场区的坡位模糊分类为例. 地球信息科学学报, 2009, 11(6): 737-743.
文章导航

/